Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 23 von 60
Zurück zur Trefferliste

Laser-Thermografie – Von der flächigen zur strukturierten Anregung

  • Im Bereich der optisch angeregten Thermografie haben sich Blitzlampen (impulsförmig-flächige Erwärmung) und Halogenlampen (moduliert-flächige Erwärmung) für die spezifischen Regime Impuls- und Lockin-Thermografie etabliert. Mittels eines rasternden fokussierten Lasers wird die Flying-spot Laserthermografie z.B. zur Risserkennung (Dauerstrichbetrieb) und die photothermische Materialcharakterisierung (hochfrequent moduliert)implementiert. Durch die Verfügbarkeit neuer Technologien (schnelle und hochauflösende IR-Kameras, brillante innovativer Lichtquellen und performante Datenakquisitions- und Verarbeitungstechnik) wird ein Paradigmenwechsel von den getrennt voneinander stehenden photothermischen und thermografischen Techniken hin zu einer einheitlichen quantitativen Mess-und Prüftechnik ermöglicht, die schneller und präziser ist. Ähnlich wie ein LED-Array, jedoch mit einer um zwei Größenordnungen höheren Bestrahlungsstärke, steht jetzt eine neuartige brillante Laserquelle, dasIm Bereich der optisch angeregten Thermografie haben sich Blitzlampen (impulsförmig-flächige Erwärmung) und Halogenlampen (moduliert-flächige Erwärmung) für die spezifischen Regime Impuls- und Lockin-Thermografie etabliert. Mittels eines rasternden fokussierten Lasers wird die Flying-spot Laserthermografie z.B. zur Risserkennung (Dauerstrichbetrieb) und die photothermische Materialcharakterisierung (hochfrequent moduliert)implementiert. Durch die Verfügbarkeit neuer Technologien (schnelle und hochauflösende IR-Kameras, brillante innovativer Lichtquellen und performante Datenakquisitions- und Verarbeitungstechnik) wird ein Paradigmenwechsel von den getrennt voneinander stehenden photothermischen und thermografischen Techniken hin zu einer einheitlichen quantitativen Mess-und Prüftechnik ermöglicht, die schneller und präziser ist. Ähnlich wie ein LED-Array, jedoch mit einer um zwei Größenordnungen höheren Bestrahlungsstärke, steht jetzt eine neuartige brillante Laserquelle, das VCSEL-Array (vertical-cavity surface-emitting laser) zur Verfügung, welches die starke Beschränkung der zeitlichen Dynamik der etablierten Lichtquellen aufhebt und gleichzeitig spektral sauber von der Detektionswellenlänge getrennt ist. Es vereint somit das schnelle zeitliche Verhalten eines Diodenlasers mit der hohen optischen Bestrahlungsstärke und dem großen Beleuchtungsbereich von Blitzlampen. Darüber hinaus kann die Erwärmung auch strukturiert vorgenommen werden, da einzelne Bereiche des VCSEL-Arrays unabhängig voneinander angesteuert werden können. Dieser neue Freiheitsgrad ermöglicht die Entwicklung ganz neuer thermografischer ZfP-Verfahren.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Ziegler-Vortrag06-11.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Mathias ZieglerORCiD
Koautor*innen:Erik Thiel, Taarna Studemund
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Deutsch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Laser; Photothermisch; Thermografie; VCSEL; Zerstörungsfreie Prüfung
Veranstaltung:Thermographie-Kolloquium 2017
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:28.09.2017
Enddatum der Veranstaltung:29.09.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:27.11.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.