Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 3 von 335
Zurück zur Trefferliste

Automated adaptive TFM method for Gas turbine Testing in NDE 4.0

  • Nondestructive testing of gas turbine blades is essential for their maintenance and service process which is critical to ensure both safety and efficiency of these highly stressed parts. In this presentation, a novel ultrasonic testing method is explored in order to acquire part thickness information in the turbine blade’s airfoil. In established industry processes, the measurements are mainly carried out manually and only at a few specific positions of the inspected parts. The proposed method scans the part using a robot arm guiding an ultrasonic array sensor. For ultrasonic coupling to the complex-shaped surface geometry, the inspected part and sensor are immersed into water. A two-step TFM[1, 2] (Total Focusing Method) approach is used to reconstruct the outer and inner surfaces subsequently from the ultrasonic raw data, which are acquired using the FMC[3] (Full Matrix Capture) measurement principle. For each sensor position, the location and geometry of the outer surface is firstNondestructive testing of gas turbine blades is essential for their maintenance and service process which is critical to ensure both safety and efficiency of these highly stressed parts. In this presentation, a novel ultrasonic testing method is explored in order to acquire part thickness information in the turbine blade’s airfoil. In established industry processes, the measurements are mainly carried out manually and only at a few specific positions of the inspected parts. The proposed method scans the part using a robot arm guiding an ultrasonic array sensor. For ultrasonic coupling to the complex-shaped surface geometry, the inspected part and sensor are immersed into water. A two-step TFM[1, 2] (Total Focusing Method) approach is used to reconstruct the outer and inner surfaces subsequently from the ultrasonic raw data, which are acquired using the FMC[3] (Full Matrix Capture) measurement principle. For each sensor position, the location and geometry of the outer surface is first identified and then used to create an image of an area inside the material. From that image, the inner surface is reconstructed. Finally, part thickness information is deducted from merging location data of inner and outer surface. The result is a high resolution, high precision mapping of the inspected part’s wall thickness.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ENCDT2023_PRESENTATION_171.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christian Hassenstein
Koautor*innen:Thomas Heckel, Ingimar Tomasson, Daniel Vöhringer, Viktoria Tkatchenko, René Kern, Torsten Berendt, Jonas Wassermann, Jens Prager
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Gasturbines; Maintenance; NDE; Overhaul; Repair; Ultrasound
Themenfelder/Aktivitätsfelder der BAM:Umwelt
Umwelt / Circular Economy
Veranstaltung:ECNDT 2023
Veranstaltungsort:Lisbon, Portugal
Beginndatum der Veranstaltung:03.07.2023
Enddatum der Veranstaltung:07.07.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:29.02.2024
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.