Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 5 von 2140
Zurück zur Trefferliste

From lattice vibrations to molecular dissociation

  • The ease with which an energetic material can be initiated by mechanical impact is a critical parameter directing material safety and application. While impact sensitivity metrics are traditionally derived experimentally, recent developments have highlighted that the phenomenon is amenable to first principles simulation. In this chapter, we will outline a fully ab initio approach to predict the relative impact sensitivities of energetic materials based on the mechanochemical principles that link the impact event to vibrational energy transfer. This mechanism is key to rationalizing how a mechanical impact—which deposits energy into the low-frequency lattice vibrations—results in a molecular response. By simulating the vibrational energy levels (the so-called phonon density of states, PDOS) using first-principles computational methods (typically dispersion-corrected plane-wave density functional theory, PW-DFT) we can calculate the relative rate of energy propagation from theThe ease with which an energetic material can be initiated by mechanical impact is a critical parameter directing material safety and application. While impact sensitivity metrics are traditionally derived experimentally, recent developments have highlighted that the phenomenon is amenable to first principles simulation. In this chapter, we will outline a fully ab initio approach to predict the relative impact sensitivities of energetic materials based on the mechanochemical principles that link the impact event to vibrational energy transfer. This mechanism is key to rationalizing how a mechanical impact—which deposits energy into the low-frequency lattice vibrations—results in a molecular response. By simulating the vibrational energy levels (the so-called phonon density of states, PDOS) using first-principles computational methods (typically dispersion-corrected plane-wave density functional theory, PW-DFT) we can calculate the relative rate of energy propagation from the delocalized low-energy lattice vibrations through to the localized molecular modes. The latter traps the energy, which eventually results in bond rupture through heightened vibrational excitation. This method, based on vibrational up-pumping, offers a route toward predicting the impact sensitivities of a broad range of energetic materials, provided the crystal structure of the compound (or salt or co-crystal) is known. While it does not offer insight into the sensitizing roles undoubtedly played by crystal defects or grain boundaries, it does provide a level of understanding at the molecular and crystal packing levels. Correspondingly, this approach offers a feedback mechanism to chemists and materials scientists to guide the design of new materials with desired impact sensitivity behavior.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-B9780128229712000103-main.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Adam MichalchukORCiD, C. Morrison
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Theoretical and Computational Chemistry
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.0 Abteilungsleitung und andere
Verlag:Elsevier B.V.
Jahrgang/Band:22
Erste Seite:215
Letzte Seite:232
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Density functional theory; Energetic materials; Material design
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Infrastruktur / Security
Material
Material / Materialdesign
DOI:10.1016/B978-0-12-822971-2.00010-3
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:28.04.2022
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.