• Treffer 10 von 0
Zurück zur Trefferliste

Lock-in Thermography using High-Power Laser Sources

  • Optical lock-in thermography is a completely contactless and very sensitive NDT technique. As an optical source of energy, incandescent (i.e. halogen) lamps are most commonly used because they are relatively inexpensive and offer high irradiances at the test site. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz, see Fig.1. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. Using the one-dimensional solution to the thermal heat diffusion equation together with theOptical lock-in thermography is a completely contactless and very sensitive NDT technique. As an optical source of energy, incandescent (i.e. halogen) lamps are most commonly used because they are relatively inexpensive and offer high irradiances at the test site. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz, see Fig.1. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. Using the one-dimensional solution to the thermal heat diffusion equation together with the absorptance of the material which is illuminated with a harmonically modulated light source, we can calculate the temperature oscillation at the surface of a solid. As a second step, we calculate the corresponding oscillation of the total thermal emission using Stefan-Boltzmann law as a first order approximation and taking into account the emissivity of the material. Within this framework we can calculate the minimal irradiance of a light source necessary to provoke a measurable signal within a thermographic camera at a noise equivalent temperature difference (NETD) of 30 mK. In Fig. 2 this relationship is displayed for a wide spectrum of modulation frequencies and for a number of different light sources scaled to the same electrical input power and illumination area. Using this figure, it is now easily possible to analyze the range of materials to be tested using lock-in thermography, since only the materials (dotted lines) below the irradiance-vs-frequency curves (solid lines) are heated in excess of the camera’s NETD. This figure clearly shows that laser sources considerably increase the application range of lock-in thermography, since especially for metals with a high reflectance and high thermal diffusivity a high irradiance is vitally important to allow for lock-in texting. We present current activities with kilowatt-class high-power laser sources for advanced lock-in thermography and focus on the application of laser arrays that offer a very high irradiation strength over a large sample area beyond the mentioned advantages.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Poster Ziegler - P45 - 06-DINA0.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Mathias ZieglerORCiD
Koautor*innen:Erik Thiel, Samim Ahmadi
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Deutsch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.0 Abteilungsleitung und andere
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Laser Thermography; Lock-in Thermography; Thermography
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Veranstaltung:Conference QIRT 2018
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:25.06.2018
Enddatum der Veranstaltung:29.06.2018
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:12.07.2018
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.