• Treffer 4 von 0
Zurück zur Trefferliste

Direct comparison of two pyrometers and a low-cost thermographic camera for time resolved LWIR temperature measurements

  • The contactless measurement of temperatures with pyrometers is state of the art and a number of different commercial devices are available. Alternatively, these temperature measurements can be performed by means of infrared cameras. In light of permanently falling costs, the application of IR cameras simply as contactless thermometers appears to be an alternative to the use of pyrometers. For a current study, the surface temperature development of a sample has to be measured and recorded with at least 20 Hz sampling rate in a temperature range between 0°C and 70°C and with a temperature resolution of 0.1 K. The absolute value of the temperature is not as important as relative changes. Due to disturbing irradiation in the SWIR and MWIR regions, the sensor should work in the LWIR. We compared two pyrometers and a low-cost infrared camera with regard to the requirements defined above. In this paper we describe the setup, the results and the data evaluation. Both, raw data and postThe contactless measurement of temperatures with pyrometers is state of the art and a number of different commercial devices are available. Alternatively, these temperature measurements can be performed by means of infrared cameras. In light of permanently falling costs, the application of IR cameras simply as contactless thermometers appears to be an alternative to the use of pyrometers. For a current study, the surface temperature development of a sample has to be measured and recorded with at least 20 Hz sampling rate in a temperature range between 0°C and 70°C and with a temperature resolution of 0.1 K. The absolute value of the temperature is not as important as relative changes. Due to disturbing irradiation in the SWIR and MWIR regions, the sensor should work in the LWIR. We compared two pyrometers and a low-cost infrared camera with regard to the requirements defined above. In this paper we describe the setup, the results and the data evaluation. Both, raw data and post processed data, were considered. Surprisingly, the infrared camera had by far the best performance of the considered devices. Particularly, due to the large number of pixel (160 x 120), the S/N could be reduced considerably compared to the pyrometers. We also studied the stability of the frame rate and the related time steps of the IR camera. Although the frame rate is unstable (running under Windows operating system), the output data for the time steps were found to be correct and the required time resolution was achieved. The application of IR cameras simply as contactless thermometers appears to be an alternative to the use of pyrometers. For a current study, the surface temperature development of a sample has to be measured and recorded with at least 20 Hz sampling rate in a temperature range between 0°C and 70°C and with a temperature resolution of 0.1 K. We compared two pyrometers and a low-cost infrared camera both sensitive in the LWIR only. Surprisingly, the infrared camera had by far the best performance of the considered devices.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Thermosense-Krankenhagen-presentation.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Rainer KrankenhagenORCiD
Koautor*innen:Simon Altenburg
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Contactless temperature measurement; Infrared camera; Layer thickness; Pyrometer
Veranstaltung:Thermosense XXXIX: Thermal Infrared Applications
Veranstaltungsort:Anaheim, CA, USA
Beginndatum der Veranstaltung:10.04.2017
Enddatum der Veranstaltung:13.04.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:12.12.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.