• Treffer 27 von 0
Zurück zur Trefferliste

Laser projected photothermal thermography for characterizing hidden defects

  • For the last 20 years active thermography has developed into a standard method in non-destructive material testing. It has become possible to detect defects such as cracks, voids, or even material inhomogeneities. Until now, it is still difficult to quantify subsurface or hidden defects in size due to the diffusive nature of heat flow within a solid. Facing this issue, lockin thermography and other photothermal techniques have been established. They are based on exciting a sample periodically (e.g. with a halogen lamp), causing a controlled periodical heat flow and thereby representing strongly damped thermal waves. These techniques make use of interference and reflection of thermal waves which allow enhancing depth resolution. So far, only the temporal component of the light source was modified to achieve a defined vertical heat flow – In contrast, we propose a novel technique in which we are able to control both: time and space. This technique enables us to exploit the possibilitiesFor the last 20 years active thermography has developed into a standard method in non-destructive material testing. It has become possible to detect defects such as cracks, voids, or even material inhomogeneities. Until now, it is still difficult to quantify subsurface or hidden defects in size due to the diffusive nature of heat flow within a solid. Facing this issue, lockin thermography and other photothermal techniques have been established. They are based on exciting a sample periodically (e.g. with a halogen lamp), causing a controlled periodical heat flow and thereby representing strongly damped thermal waves. These techniques make use of interference and reflection of thermal waves which allow enhancing depth resolution. So far, only the temporal component of the light source was modified to achieve a defined vertical heat flow – In contrast, we propose a novel technique in which we are able to control both: time and space. This technique enables us to exploit the possibilities of coherent thermal wave shaping. We achieve that by combining a spatial light modulator (SLM) with a high power laser. This approach allows us to launch a set of individually controlled and fully coherent high energy thermal waves into the sample volume. That means, we intentionally use wave propagation throughout the sample’s material in both - vertical and lateral direction. As one possible application, we use a thermal waves’ interference effect of two phase shifted wave patterns to detect the position of hidden defects. The wave patterns are positioned with a certain distance and a 180° phase shift to each other creating an amplitude depletion zone right in the middle of the two patterns. When a defect is brought unsymmetrically into the depletion zone, the lateral heat flow is disturbed. If the sample is now moved through the depletion zone, a defect can be easily characterized. Exciting periodically while controlling simultaneously phase and amplitude enables us to have a defined thermal wave propagation throughout the sample which means thermal waves can be controlled almost like acoustical or optical waves. This offers the opportunity to transfer known technologies from wave shaping techniques to thermography methods.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2016-05-24 ETH Laser Projected Photothermal Thermography for characterizing hidden defects2.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Erik Thiel
Koautor*innen:M. Kreutzbruck, Mathias Ziegler
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Active thermography; DMD; SLM; Thermal waves
Veranstaltung:19th World Conference of Non-Destructive Testing 2016
Veranstaltungsort:München, Germany
Beginndatum der Veranstaltung:13.06.2016
Enddatum der Veranstaltung:17.06.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:21.06.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.