• Treffer 13 von 0
Zurück zur Trefferliste

Determining the Material Parameters for the Reconstruction of Defects in Carbon Fiber Reinforced Polymers from Data Measured by Flash Thermography

  • Flash thermography is a fast and reliable non-destructive testing method for the investigation of defects in carbon fiber reinforced polymer (CFRP) materials. In this paper numerical simulations of transient thermography data are presented, calculated for a quasi-isotropic flat bottom hole sample. They are compared to experimental data. These simulations are one important step towards the quantitative reconstruction of a flaw by assessing thermographic data. The applied numerical model is based on the finite-element method, extended by a semi-analytical treatment of the boundary of the sample, which is heated by the flash light. A crucial part for a reliable numerical model is the prior determination of the material parameters of the specimen as well as of the experimental parameters of the set-up. The material parameters in plane and in depth diffusivity are measured using laser line excitation. In addition, the absorption and heat transfer process of the first layers is investigatedFlash thermography is a fast and reliable non-destructive testing method for the investigation of defects in carbon fiber reinforced polymer (CFRP) materials. In this paper numerical simulations of transient thermography data are presented, calculated for a quasi-isotropic flat bottom hole sample. They are compared to experimental data. These simulations are one important step towards the quantitative reconstruction of a flaw by assessing thermographic data. The applied numerical model is based on the finite-element method, extended by a semi-analytical treatment of the boundary of the sample, which is heated by the flash light. A crucial part for a reliable numerical model is the prior determination of the material parameters of the specimen as well as of the experimental parameters of the set-up. The material parameters in plane and in depth diffusivity are measured using laser line excitation. In addition, the absorption and heat transfer process of the first layers is investigated using an IR microscopic lens. The performance of the two distinct components of CFRP during heating – epoxy resin and carbon fibers – is examined. Finally, the material parameters are optimized by variation and comparison of the simulation results to the experimental data. The optimized parameters are compared to the measured ones and further methods to ensure precise material parameter measurements are discussed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Mueller_FB8.7_AIPConferenceProc_2017_1.4974671.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Jan P. Müller, S. Götschel, Christiane MaierhoferORCiD, M. Weiser
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):AIP Conference Proceedings
Jahr der Erstveröffentlichung:2017
Verlag:AIP Publishing
Verlagsort:Melville, NY, USA
Jahrgang/Band:1806
Ausgabe/Heft:1
Erste Seite:UNSP 100006-1
Letzte Seite:11
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Aktive Thermografie; CFK; Kohlenstofffaserverstärkter Kunststoff; Thermische Diffusivität; Zerstörungsfreie Prüfung
Active thermography; CFRP; Carbon fiber reinforced polymer; Non-Destructive testing; Thermal diffusivity
Veranstaltung:43rd Review of Progress in Quantitative Nondestructive Evaluation
Veranstaltungsort:Atlanta, GA, USA
Beginndatum der Veranstaltung:17.07.2016
Enddatum der Veranstaltung:22.07.2016
DOI:10.1063/1.4974671
ISSN:0094-243X
ISBN:978-0-7354-1474-7
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:13.03.2017
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:07.07.2017
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.