• Treffer 33 von 0
Zurück zur Trefferliste

Iterative numerical 2D-modelling for quantification of material defects by pulsed thermography

  • This paper presents a method to quantify the geometry of defects such as flat bottom holes (FBH) and notches in opaque materials by a pulse thermography (PT) experiment and a numerical model. The aim was to precisely describe PT experiments in reflection configuration with a simple and fast numerical model in order to use this model and a fit algorithm to quantify defects within the material. The algorithm minimizes the difference between the time sequence of a line shaped region of interest (ROI) on the surface (above the defect) from the PT experiment and the numerical data. Therefore, the experimental data can be reconstructed with the numerical model. In this way, the defect depth of a notch or FBH and its width or diameter was determined simultaneously. A laser was used for heating which was widened to a top hat spatial profile to ensure homogeneous illumination (rectangular impulse profile in time). The numerical simulation considers heating conditions and takes thermal lossesThis paper presents a method to quantify the geometry of defects such as flat bottom holes (FBH) and notches in opaque materials by a pulse thermography (PT) experiment and a numerical model. The aim was to precisely describe PT experiments in reflection configuration with a simple and fast numerical model in order to use this model and a fit algorithm to quantify defects within the material. The algorithm minimizes the difference between the time sequence of a line shaped region of interest (ROI) on the surface (above the defect) from the PT experiment and the numerical data. Therefore, the experimental data can be reconstructed with the numerical model. In this way, the defect depth of a notch or FBH and its width or diameter was determined simultaneously. A laser was used for heating which was widened to a top hat spatial profile to ensure homogeneous illumination (rectangular impulse profile in time). The numerical simulation considers heating conditions and takes thermal losses due to convection and radiation into account. We quantified the geometry of FBH and notches in steel and polyvinyl chloride plasticized (PVC-U) materials with an accuracy of < 5 %.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1.5099719_Bernegger.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Raphael Bernegger, Simon AltenburgORCiD, Christiane MaierhoferORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):AIP Conference Proceedings
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.0 Abteilungsleitung und andere
Verlag:AIP
Erste Seite:020015-1
Letzte Seite:11
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:2D model; Data reconstruction; Flat bottom holes; Notches; Numerical modelling; Opaque materials; Pulsed thermography
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
DOI:10.1063/1.5099719
ISSN:0094-243X
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:16.05.2019
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:29.08.2019
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.