Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 49 von 398
Zurück zur Trefferliste

Long-term mechanical and shrinkage properties of cementitious grouts for structural repair

  • Grouts are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23 °C and 55% relative humidity. The effect of SCMs on the properties are characterised byGrouts are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23 °C and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • SMSS19_Huesken_BAM.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Götz Hüsken
Koautoren/innen:M. Shamsuddoha, Wolfram Schmidt, Hans-Carsten Kühne, Matthias Baeßler
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.2 Ingenieurbau
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Fly ash; Grout; Long-term shrinkage; Metakaolin; Micro silica
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Erneuerbare Energien
Veranstaltung:International Conference on Sustainable Materials, Systems and Structures (SMSS 2019)
Veranstaltungsort:Rovinj, Croatia
Beginndatum der Veranstaltung:20.03.2019
Enddatum der Veranstaltung:22.03.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:27.03.2019
Referierte Publikation:Nein