Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 20 von 395
Zurück zur Trefferliste

Comparison of cracks formed in scaled grouted connection of offshore energy structures under static and cyclic loads

  • Global energy consumption will increase in the future necessitating both fossil fuels and renewable energy choices - especially wind energy. Such high energy demand requires installation of offshore energy structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with maintenances. Due to their large size and remote locations, cylindrical grouted joints are often adopted between substructure and foundation in these offshore platforms and wind structures such as monopiles. However, these connections are composite structures with exterior sleeve, interior pile and infill mortar. Degradation and settlements were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites were proven difficult to obtain ideal load bearing capacity. In-situ loading conditions were also found to be affecting the failure mechanism inside such connections. This study aims at characterizing the nature ofGlobal energy consumption will increase in the future necessitating both fossil fuels and renewable energy choices - especially wind energy. Such high energy demand requires installation of offshore energy structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with maintenances. Due to their large size and remote locations, cylindrical grouted joints are often adopted between substructure and foundation in these offshore platforms and wind structures such as monopiles. However, these connections are composite structures with exterior sleeve, interior pile and infill mortar. Degradation and settlements were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites were proven difficult to obtain ideal load bearing capacity. In-situ loading conditions were also found to be affecting the failure mechanism inside such connections. This study aims at characterizing the nature of cracks generated in these grouted connections under both static and cyclic loading. Scaled grouted joints were manufactured using a novel reusable mold, and connections were loaded to failure to visualize the main failure patterns. An assessment between failure under these two types of load is drawn along with comparison to previously available literature.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Huesken_SMAR2019.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Götz Hüsken
Koautoren/innen:Md Shamsuddoha, Marc Thiele, Matthias Baeßler, Hans-Carsten Kühne
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.2 Ingenieurbau
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Crack formation; Crack pattern; Cyclic load; Grouted connection; Static load
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Erneuerbare Energien
Veranstaltung:5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures
Veranstaltungsort:Potsdam, Germany
Beginndatum der Veranstaltung:27.08.2019
Enddatum der Veranstaltung:29.08.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:02.09.2019
Referierte Publikation:Nein