Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 46 von 61
Zurück zur Trefferliste

Modelling of propagation with SPH of 1966 Aberfan flowslide: special attention to the role of rheology and pore water pressure

  • Landslides can cause major economic damage and a large number of casualities as it is possible to see from past events occurred all over the world. Being able to predict these kind of hazards would then suppose the achievement of great benefits. Here a model that combines a depth integrated description of the soil-pore fluid mixture together with a set of 1D models dealing with pore pressure evolution within the soil mass is presented. The mathematical model is based on the Biot-Zienkiewicz equations, from where a depth averaged model is derived. Concerning the material behaviour, the approach used is the one suggested by the Perzyna viscoplasticity, which has been extensively used in the past to model solid behaviour prior to failure. In this framework, a simple shear rheological model is derived, providing the basal friction needed in depth integrated models. The Smoothed Particle Hydrodynamics (SPH) has been the numerical technique chosen to spatially discretised the depthLandslides can cause major economic damage and a large number of casualities as it is possible to see from past events occurred all over the world. Being able to predict these kind of hazards would then suppose the achievement of great benefits. Here a model that combines a depth integrated description of the soil-pore fluid mixture together with a set of 1D models dealing with pore pressure evolution within the soil mass is presented. The mathematical model is based on the Biot-Zienkiewicz equations, from where a depth averaged model is derived. Concerning the material behaviour, the approach used is the one suggested by the Perzyna viscoplasticity, which has been extensively used in the past to model solid behaviour prior to failure. In this framework, a simple shear rheological model is derived, providing the basal friction needed in depth integrated models. The Smoothed Particle Hydrodynamics (SPH) has been the numerical technique chosen to spatially discretised the depth integrated equations of the mathematical model. The purpose of this work is to apply the SPH depth integrated numerical model, together with the sub-model that predicts the evolution of the pore water pressure inside the landslide, to simulate the propagation phase of the Aberfan flowslide occurred in 1966.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Complas2015_151-161_Modelling of propagation.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Paola Dutto, M.M. Stickle, D. Manzanal, A.Y. Hernán, M. Pastor
Persönliche Herausgeber*innen:E. Onate, D.R.J. Owen, D. Peric, M. Chiumenti
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):COMPLAS XIII - 13th International conference on computational plasticity - Fundamentals and applications
Jahr der Erstveröffentlichung:2015
Erste Seite:151
Letzte Seite:161
Freie Schlagwörter:Aberfan flowslide; Fluidised geomaterials; Numerical modelling; SPH; Smoothed particle hydrodynamics
Veranstaltung:COMPLAS XIII - 13th International conference on computational plasticity - Fundamentals and applications
Veranstaltungsort:Barcelona, Spain
Beginndatum der Veranstaltung:01.09.2015
Enddatum der Veranstaltung:03.09.2015
URL:http://congress.cimne.com/complas2015/frontal/doc/EbookComplas2015.pdf
ISBN:978-84-944244-6-5
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:24.09.2015
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.