• Treffer 20 von 0
Zurück zur Trefferliste

Modelling of compaction grouting using the implicit MPM

  • Compaction grouting involves the injection under high pressure of a highly viscous grout into the soil to displace and compact the surrounding soil without fracturing it. This ground improvement technique has been used widely for settlement control, increasing liquefaction resistance or bearing capacity of soil under new or existing structures. The work presented here aims to show some numerical and experimental investigations being carried out to understand the compaction mechanism and the soil-grout interaction, which is crucial for a successful usage of this technique. To investigate compaction grouting in the laboratory under various stress conditions, a large-scale testing chamber has been developed. The grout was injected directly at the transparent vertical window of the chamber in order to investigate the possibility to monitor the injection process with a camera to measure the in-plane soil displacements and strains by means of the PIV technique. The other aim of this studyCompaction grouting involves the injection under high pressure of a highly viscous grout into the soil to displace and compact the surrounding soil without fracturing it. This ground improvement technique has been used widely for settlement control, increasing liquefaction resistance or bearing capacity of soil under new or existing structures. The work presented here aims to show some numerical and experimental investigations being carried out to understand the compaction mechanism and the soil-grout interaction, which is crucial for a successful usage of this technique. To investigate compaction grouting in the laboratory under various stress conditions, a large-scale testing chamber has been developed. The grout was injected directly at the transparent vertical window of the chamber in order to investigate the possibility to monitor the injection process with a camera to measure the in-plane soil displacements and strains by means of the PIV technique. The other aim of this study is to develop a numerical model, which should be able to deal with large displacements and deformations and to simulate the change in shape of the distinct soil-grout interface solely as a result of the interaction between the injected grout and the surrounding soil. Based on these considerations, as a numerical technique, we employ the implicit Material Point Method based on a mixed formulation, which is implemented in the open source Kratos Multiphysics framework. In contrast to standard FE formulations, the usage of the MPM avoids both the numerical instability caused by extensive mesh distortion and the high computational costs of remeshing. The main results focus on the different evolution of the grout bulb inside the soil under various stress states.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ALERT-2017_Geissler_Modelling-of-compaction-grouting-using-the-implicit-MPM.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Peter Geißler
Koautor*innen:I. Iaconeta, Matthias Baeßler, Pablo Cuéllar
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Compaction grouting; Material point method (MPM); Mixed formulation; Particle image velocimetry (PIV); Soil-grout interface
Veranstaltung:28th ALERT Workshop
Veranstaltungsort:Aussois, France
Beginndatum der Veranstaltung:02.10.2017
Enddatum der Veranstaltung:04.10.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:10.10.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.