• Treffer 3 von 31
Zurück zur Trefferliste

The influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels

  • The influence of temperature and stacking fault energy (SFE) on the strain-hardening behavior and critical resolved shear stress for twinning was investigated for three Fe–22/25/28Mn–3Al–3Si wt.% transformation- and twinning-induced plasticity (TRIP/TWIP) steels. The SFEs were calculated by two different methods, density functional theory and statistical thermodynamic modeling. The dislocation structure, observed at low levels of plastic deformation, transitions from “planar” to “wavy” dislocation glide with an increase in temperature, Mn content, and/or SFE. The change in dislocation glide mechanisms from planar to wavy reduces the strain hardening rate, in part due to fewer planar obstacles and greater cross slip activity. In addition, the alloys exhibit a large decrease in strength and ductility with increasing temperature from 25 to 200 °C, attributed to a substantial reduction in the thermally activated component of the flow stress, predominate suppression of TRIP and TWIP, and aThe influence of temperature and stacking fault energy (SFE) on the strain-hardening behavior and critical resolved shear stress for twinning was investigated for three Fe–22/25/28Mn–3Al–3Si wt.% transformation- and twinning-induced plasticity (TRIP/TWIP) steels. The SFEs were calculated by two different methods, density functional theory and statistical thermodynamic modeling. The dislocation structure, observed at low levels of plastic deformation, transitions from “planar” to “wavy” dislocation glide with an increase in temperature, Mn content, and/or SFE. The change in dislocation glide mechanisms from planar to wavy reduces the strain hardening rate, in part due to fewer planar obstacles and greater cross slip activity. In addition, the alloys exhibit a large decrease in strength and ductility with increasing temperature from 25 to 200 °C, attributed to a substantial reduction in the thermally activated component of the flow stress, predominate suppression of TRIP and TWIP, and a significant increase in the critical resolved shear stress for mechanical twinning. Interestingly, the increase in SFE with temperature had a rather minor influence on the critical resolved shear stress for mechanical twinning, and other temperature dependent factors which likely play a more dominant role are discussed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Materialia.22.101425.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:D.T. Pierce, J.T. Benzing, J.A. Jiménez, Tilmann Hickel, I. Bleskov, J. Keum, D. Raabe, J.E. Wittig
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Materialia
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.4 Materialinformatik
Verlag:Elsevier B.V.
Jahrgang/Band:22
Aufsatznummer:101425
Erste Seite:1
Letzte Seite:13
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Plasticity mechanism; Stacking fault energy; TRIP Steel; TWIP Steel; Twinning
Themenfelder/Aktivitätsfelder der BAM:Material
DOI:10.1016/j.mtla.2022.101425
ISSN:2589-1529
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:12.12.2022
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:12.12.2022
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.