Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 44 von 71
Zurück zur Trefferliste

One-part alkali-activated materials with high sulfuric acid resistance

  • Materials with a high acid resistance are required in different important infrastructures. Examples include repair systems for sewer structures, where biogenic sulfuric acid corrosion is the major degradation mechanism. Low-calcium alkali-activated materials (AAMs) have been repeatedly observed to exhibit high acid resistance. However, the reasons for the high acid resistance of these materials were not fully under¬stood until recently, and the use of highly alkaline activator solutions to produce AAMs appears to hamper their commercial uptake. These issues have been tackled by characterising one-part AAMs and studying their alteration when exposed to sulfuric acid. One-part AAMs were synthesized by mixing blends of solid silica and sodium aluminate with water, and subsequent curing at 60–80 °C. Acid resistance testing was performed according to DIN 19573, i.e. exposure to sulfuric acid at pH = 1 for 70 days. Characterisation of the cured and the acid-exposed materials was done byMaterials with a high acid resistance are required in different important infrastructures. Examples include repair systems for sewer structures, where biogenic sulfuric acid corrosion is the major degradation mechanism. Low-calcium alkali-activated materials (AAMs) have been repeatedly observed to exhibit high acid resistance. However, the reasons for the high acid resistance of these materials were not fully under¬stood until recently, and the use of highly alkaline activator solutions to produce AAMs appears to hamper their commercial uptake. These issues have been tackled by characterising one-part AAMs and studying their alteration when exposed to sulfuric acid. One-part AAMs were synthesized by mixing blends of solid silica and sodium aluminate with water, and subsequent curing at 60–80 °C. Acid resistance testing was performed according to DIN 19573, i.e. exposure to sulfuric acid at pH = 1 for 70 days. Characterisation of the cured and the acid-exposed materials was done by XRD, ATR-FTIR, SEM as well as 29Si, 27Al and 1H MAS NMR spectroscopy, including cross-polarisation and double-resonance methods. Materials synthesized from industrial silicas were gel-zeolite composites, containing a substantial amount of unreacted ‘excess’ silica, while materials synthesized from rice husk ash were fully amorphous, containing ‘excess’ hydrous alumina. The sulfuric acid resistance of mortars based on these binders conformed to the requirements of DIN 19573 for sewer repair applications. The high acid resistance was caused by precipitation of silica gel at the mortar–solution interface, inhibiting further degradation. The presence of alumina gel may inhibit bacterial activity, potentially further improving performance in sewer environments. The phase assemblage of silica/sodium aluminate-based one-part AAMs can be adjusted via choice of the silica starting material. Properly designed materials exhibit excellent acid resistance, caused by precipi¬tation of silica gel which protects subjacent regions, and they may also inhibit bacterial activity.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Gluth_2019_XVI ECerS.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Gregor GluthORCiD
Koautor*innen:Patrick Sturm, Sebastian Greiser, Christian Jäger, H.J.H. Brouwers, Hans-Carsten Kühne
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.3 Strukturanalytik
7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Acid resistance; Alkali-activated materials; One-part mix
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Veranstaltung:XVI ECerS Conference
Veranstaltungsort:Turin, Italy
Beginndatum der Veranstaltung:16.06.2019
Enddatum der Veranstaltung:20.06.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.06.2019
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.