• Treffer 38 von 835
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-573240

Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations

  • Radiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging fromRadiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging from cancerous tissue, cells and their organelles including the nucleus, mitochondria and membranes, over radiosensitizer such as metallic nanoparticles, and water with additional radical scavenger, down to isolated biomolecules in the form of DNA, RNA, proteins and DNA-protein complexes. Hereby the degradation of biomolecules by direct damage from inelastic scattering processes during the physical stage, and the indirect damage caused by radicals during the chemical stage as well as some parts of the early biological response is covered. Due to their high abundance the action of hydroxyl radicals (•OH) and secondary low energy electrons (LEE) as well as prehydrated electrons are covered in additional detail. Applications in the prediction of DNA damage, DNA repair processes, cell survival and apoptosis, influence of radiosensitizer on the dose distribution within cells and their organelles, the study of linear energy transfer (LET), the relative biological effectiveness (RBE), ion beam cancer therapy, microbeam radiation therapy (MRT), the FLASH effect, and the radiation induced bystander effect are reviewed.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marc Benjamin HahnORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of Physics Communications
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.6 Physik und chemische Analytik der Polymere
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Institute of Physics (IOP) Publishing
Verlagsort:London
Jahrgang/Band:7
Ausgabe/Heft:4
Erste Seite:042001
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Au; AuNP; Base damage; Base loss; Beta decay; Bio-SAXS; Brachytherapy; Bragg peak; Bystander effect; Cancer treatment; Carbon ions; Cells; Clustered nanoparticles; Cosolute; DMSO; DNA; DNA damage; DNA radiation damage; DSB; Direct damage; Dissociative electron attachment (DEA); Dissociative electron transfer (DET); Dosimetry; Double-strand break (DSB); ESCA; Ectoin; Ectoine; Electrons; Energy deposit; FLASH effect; G5P; GVP; Geant4; Geant4-DNA; Gene five protein; Gold Nanoparticles; Hydrated DNA; Hydrated electron; Hydration shell; Hydroxyectoine; Hydroxyl radical; Indirect damage; Ion beam therapy; Ionisation; Ionization; Ionizing radiation damage; LET; Livermore model; Low energy electrons; MCNP; MCS; MRT; Microdosimetry; Monte-Carlo simulation; Monte-Carlo simulations; NAP-XPS; NP; Nanodosimetry; Near ambient pressure xray photo electron spectroscopy; Net-ionization reaction; OH; OH radical; OH radical scavenger; Osmolyte; Particle scattering; Particle scattering simulations; Penelope model; Photons; Prehydrated electron; Presolvated electron; Protein; Protein unfolding; Proteins; Quasi-direct damage; RBE; RNA; ROS; Radiation; Radiation damage; Radiation therapy; Radiationtherapy; Radical; Radical Scavenge; Radical scavenger; Radioactive decay; Radiolysis; Radiotherapy; Reactive oxygen species; SAXS; SSB; Simulation; Single-strand break (SSB); Single-stranded DNA-binding proteins; TOPAS; TOPAS-nbio; X-ray scattering; XPS; Xray; Xray photo electron spectrocopy; abasic side; base loss; dsDNA; ssDNA
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Material
Material / Degradation von Werkstoffen
Material / Nano
Umwelt
Umwelt / Umwelt-Material-Interaktionen
DOI:10.1088/2399-6528/accb3f
URN:urn:nbn:de:kobv:b43-573240
ISSN:2399-6528
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International
Datum der Freischaltung:19.04.2023
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:31.05.2023
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.