• Treffer 3 von 0
Zurück zur Trefferliste

Tuning the surface of nanoparticles: Impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake

  • Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces theDue to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Koshkina_et_al-2016-Macromolecular_Bioscience.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Olga Koshkina, D. Westmeier, Thomas Lang, C. Bantz, A. Hahlbrock, Christian WürthORCiD, Ute Resch-GengerORCiD, Ulrike BraunORCiD, Raphael Thiermann, C. Weise, M. Eravci, B. Mohr, H. Schlaad, R. H. Stauber, D. Docter, Annabelle BertinORCiD, M. Maskos
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Macromolecular Bioscience
Jahr der Erstveröffentlichung:2016
Jahrgang/Band:16
Ausgabe/Heft:9
Erste Seite:1287
Letzte Seite:1300
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Cellular uptake; Poloxazolines; Protein corona
DOI:10.1002/mabi.201600074
ISSN:1616-5187
ISSN:1616-5195
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:15.09.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:17.11.2016
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.