• Treffer 6 von 0
Zurück zur Trefferliste

Atomically ordered (Mn,Ga) As crystallites on and within GaAs

  • Metal organic vapor phase epitaxy (MOVPE) of Mn-rich (Mn,Ga)As on (001) oriented GaAs wafers resulted in atomically ordered (Mn,Ga)As crystallites of two morphological kinds, partially embedded on the wafer surface and fully embedded within the single crystalline matrix. While the former were apparently free of defects (other than unavoidable point defects), the latter contained two domains separated by a grain boundary. Since atomic ordering can be modeled by space group symmetry descent considerations (Bärnighausen trees) that start with the space group of the known crystallographic phases of random (Mn,Ga)As alloys with specified chemical compositions, reasonable structure hypotheses have been derived for two atomically ordered Mn0.75Ga0.25As phases that we call the trigonal α' and the monoclinic β' phases. The implications of these structure hypotheses are in agreement with the results of a range of scanning transmission electron microscopy (STEM) and parallel illumination electronMetal organic vapor phase epitaxy (MOVPE) of Mn-rich (Mn,Ga)As on (001) oriented GaAs wafers resulted in atomically ordered (Mn,Ga)As crystallites of two morphological kinds, partially embedded on the wafer surface and fully embedded within the single crystalline matrix. While the former were apparently free of defects (other than unavoidable point defects), the latter contained two domains separated by a grain boundary. Since atomic ordering can be modeled by space group symmetry descent considerations (Bärnighausen trees) that start with the space group of the known crystallographic phases of random (Mn,Ga)As alloys with specified chemical compositions, reasonable structure hypotheses have been derived for two atomically ordered Mn0.75Ga0.25As phases that we call the trigonal α' and the monoclinic β' phases. The implications of these structure hypotheses are in agreement with the results of a range of scanning transmission electron microscopy (STEM) and parallel illumination electron diffraction (ED) studies that include quantitative energy dispersive X-ray spectroscopy, X-ray spectroscopic imaging, as well nanobeam diffraction and high angle precession ED. The coexistence of two domains within the fully embedded crystallites is predicted by the corresponding Bärnighausen tree and observed experimentally for the fully embedded crystallites.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • H-usler_et_al-2015-Crystal_Research_and_Technology.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Ines Häusler, P. Moeck, K. Volz, W. Neumann
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Crystal research and technology
Jahr der Erstveröffentlichung:2015
Verlag:Wiley-VCH Verlag GmbH & Co. KGaA
Verlagsort:Weinheim
Jahrgang/Band:50
Ausgabe/Heft:12
Erste Seite:967
Letzte Seite:973
Freie Schlagwörter:(Mn,Ga) As crystallites; Bärninghausen symmetry trees; Precession electron diffraction; STEM/TEM imaging; Scanning nanobeam mapping
DOI:10.1002/crat.201500310
ISSN:0023-4753
ISSN:1521-4079
ISSN:0232-1300
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:18.11.2016
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.