• Treffer 6 von 15
Zurück zur Trefferliste

Generation of ceramic green bodies in the additive manufacturing by Laser Induced Slip-casting (LIS)

  • For the additive manufacture of large components usually powder-based methods are used. A powder is deposited layer wise by a recoater, then, the component structure is printed to the powder bed or sintered by a laser. In slurry based methods, the slurry is deposited by a doctor blade and dried before the printing of binder or the laser treatment. The new method of laser-induced slip casting is also a slurry-based method and the layers deposited sequential. However the slip is not dried and the structure is written directly by a laser into the suspension. The wall thickness of the ceramic material can be adjusted by the laser spot size and treatment time. The water is evaporated by the laser and a green body is formed locally. Because of its porosity, water is taken from the surrounding suspension and the wall thickness of the green body increases with treatment time. Due to the use of highly filled suspensions, the green body is stable in the ceramic slurry. Large green bodies can beFor the additive manufacture of large components usually powder-based methods are used. A powder is deposited layer wise by a recoater, then, the component structure is printed to the powder bed or sintered by a laser. In slurry based methods, the slurry is deposited by a doctor blade and dried before the printing of binder or the laser treatment. The new method of laser-induced slip casting is also a slurry-based method and the layers deposited sequential. However the slip is not dried and the structure is written directly by a laser into the suspension. The wall thickness of the ceramic material can be adjusted by the laser spot size and treatment time. The water is evaporated by the laser and a green body is formed locally. Because of its porosity, water is taken from the surrounding suspension and the wall thickness of the green body increases with treatment time. Due to the use of highly filled suspensions, the green body is stable in the ceramic slurry. Large green bodies can be built which have no visible layers in the microstructure.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Thomas_ Muehler 2016_03_09.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:T. Mühler
Koautoren/innen:Jörg Lüchtenborg, Jens Günster
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.4 Keramische Prozesstechnik und Biowerkstoffe
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:additive manufacturing; ceramics
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:91. DKG Jahrestagung & Symposium Hochleistungskeramik 2016
Veranstaltungsort:Freiberg; Germany
Beginndatum der Veranstaltung:07.03.2016
Enddatum der Veranstaltung:09.03.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:02.11.2016
Referierte Publikation:Nein