• Treffer 6 von 218
Zurück zur Trefferliste

A deep etching mechanism for trench-bridging silicon nanowires

  • Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with microstructures up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surroundingIntroducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with microstructures up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 m. All cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Wollschlaeger_Oesterle_et_al - A deep etching mechanism for trench-bridging silicon nanowires.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Z. Tasdemir, Nicole Wollschläger, Werner ÖsterleORCiD, Y. Leblebici, B. E. Alaca
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Nanotechnology
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe
Verlag:IOP Publishing
Jahrgang/Band:27
Ausgabe/Heft:9
Erste Seite:095303-1
Letzte Seite:095303-8
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Deep reactive ion etching; Silicon nanowire; Transmission electron microscopy
Themenfelder/Aktivitätsfelder der BAM:Material
DOI:https://doi.org/10.1088/0957-4484/27/9/095303
URL:http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000369604100010
ISSN:0957-4484
ISSN:1361-6528
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.04.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:26.04.2016