• Treffer 2 von 3
Zurück zur Trefferliste

3D Printing of Self-Organizing Structural Elements for Advanced Functional Structures

  • A shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome theA shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome the paradigm which strictly orrelates the geometrical definition of 3D printed parts to the volumetric resolution of the printing process. Moreover, a transient liquid phase allows local programming of functionalities, such as the alignment of functional particles, by means of electric or magnetic fields.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Chi_et_al-2018-Advanced_Materials_Technologies.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Jinchun Chi, Andrea Zocca, Boris Agea Blanco, J. Melcher, M. Sparenberg, Jens Günster
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Advanced Materials Technologies
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.4 Keramische Prozesstechnik und Biowerkstoffe
Verlag:Wiley-VCH
Verlagsort:Weinheim
Jahrgang/Band:3
Ausgabe/Heft:5
Erste Seite:1800003-1
Letzte Seite:1800003-7
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:3D-Printing; Additive Manufacturing; Polymeric Materials; Self-Assembly
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialien und Stoffe
DOI:https://doi.org/10.1002/admt.201800003
URL:http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=WOS:000431960700011
ISSN:2365-709X
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:15.08.2018
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:15.08.2018