• Treffer 1 von 1
Zurück zur Trefferliste

High-strength and gas-tight ceramic-ceramic joints by RAB composite tapes

  • Ceramic components with complex shape cannot be produced frequently by usual ceramic forming and sintering processes. Therefore, numerous joining methods were developed and introduced in industrial scale. Nowadays, multi-stage Mo-Mn-process and active brazing are preferentially used, if temperature-stable and gastight joints are required. Unfortunately, both processes involve cost-intensive thermal processes: hydrogenous atmosphere is essential for metallization in Mo-Mn-process and active brazing takes place under vacuum. Thermal processes can be drastically simplified by using Reactive Air Brazing (RAB). Joining under air atmosphere is an interesting alternative, especially to join oxide ceramic components among themselves. So far, main disadvantage of RAB is low strength of join connections. Aim of this investigation was the development of high-strength, thermal shock resistant and gastight ceramic-ceramic joints by RAB. Therefore, - commercial, silver and copper oxide containingCeramic components with complex shape cannot be produced frequently by usual ceramic forming and sintering processes. Therefore, numerous joining methods were developed and introduced in industrial scale. Nowadays, multi-stage Mo-Mn-process and active brazing are preferentially used, if temperature-stable and gastight joints are required. Unfortunately, both processes involve cost-intensive thermal processes: hydrogenous atmosphere is essential for metallization in Mo-Mn-process and active brazing takes place under vacuum. Thermal processes can be drastically simplified by using Reactive Air Brazing (RAB). Joining under air atmosphere is an interesting alternative, especially to join oxide ceramic components among themselves. So far, main disadvantage of RAB is low strength of join connections. Aim of this investigation was the development of high-strength, thermal shock resistant and gastight ceramic-ceramic joints by RAB. Therefore, - commercial, silver and copper oxide containing RAB soldering composition was modified by addition of ceramic particles with low thermal expansion coefficients (TEC). Hence, thermal misfit between TEC of solder and ceramic components was significantly reduced. - RAB soldering paste was replaced with newly developed RAB composite tapes, produced by ceramic “doctor blade” technology. Thereby, improved potential exist to tailor the brazing layer relating to composition, thickness and thickness uniformity. Gastight alumina-alumina, alumina-zirconia and zirconia-zirconia joints with strongly improved strength were produced by novel composite tapes. No strength degradation of joints was observed after thermal cycling up to 700°C.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Poster RAB_DKG-JT.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Hamid Naghib-zadeh
Koautoren/innen:Wolfgang Güther, Torsten Rabe
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.5 Technische Keramik
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Brazing; Ceramic-ceramc joints; Compsite tapes
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:Jahrestagung der Deutschen Keramischen Gesellschaft (DKG) 2016
Veranstaltungsort:Freiberg, Germany
Beginndatum der Veranstaltung:07.03.2016
Enddatum der Veranstaltung:09.03.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.05.2016
Referierte Publikation:Nein