Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 22 von 1057
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-573576

Interstitial segregation has the potential to mitigate liquid metal embrittlement in iron

  • The embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion-enhancing interstitial solutes and embrittling elements inducing grain boundary decohesion is not understood. Here, we unveil the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [0 0 1] tilt grain boundary in α −Fe (4 at.% Al). Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex grain boundary states. Ab-initio simulations reveal that boron hinders zinc segregation and compensates for the zinc induced loss in grain boundary cohesion. Our work sheds new light on how interstitial solutes intimately modify grain boundaries, thereby openingThe embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion-enhancing interstitial solutes and embrittling elements inducing grain boundary decohesion is not understood. Here, we unveil the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [0 0 1] tilt grain boundary in α −Fe (4 at.% Al). Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex grain boundary states. Ab-initio simulations reveal that boron hinders zinc segregation and compensates for the zinc induced loss in grain boundary cohesion. Our work sheds new light on how interstitial solutes intimately modify grain boundaries, thereby opening pathways to use them as dopants for preventing disastrous material failure.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A. Ahmadian, D. Scheiber, X. Zhou, B. Gault, Reza Darvishi KamachaliORCiD, L. Romaner, W. Ecker, G. Dehm, C. H. Liebscher
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Advanced Materials
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.5 Materialmodellierung
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Wiley online library
Ausgabe/Heft:e2211796
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Alloy Safety; CALPHAD; Liquid Metal Embrittlement; Materials Modelling; Microstructure Design
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Degradation von Werkstoffen
Material / Materialdesign
DOI:10.1002/adma.202211796
URN:urn:nbn:de:kobv:b43-573576
ISSN:0935-9648
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Datum der Freischaltung:24.04.2023
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:24.04.2023
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.