• Treffer 15 von 171
Zurück zur Trefferliste

New bioactive glasses with improved sintering behavior

  • Nowadays, the use of bioactive glasses is established for bone regeneration; however glasses are used mostly as powders, granules or in a paste. Sintered scaffolds are not used clinically, because of the in inherent problem of crystallization during the sintering process, resulting in poor mechanical properties and reduced bioactivity. The aim of this study was therefore to design new bioactive glasses, which combine improved processing and sintering with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkalioxide ratio was increased, sodiumoxide was partially replaced by potassiumoxide and up to 8 mol% calciumflorid were added, in order to stabilize the glass against crystallization. The sintering behavior of the new glasses was characterized by heating microscopy and compared to Bioglass® 45S5. The results showed that the new glasses achieved a sintered density of 88-99 % in contrast to only 57-67% for Bioglass® 45S5. In addition FTIR andNowadays, the use of bioactive glasses is established for bone regeneration; however glasses are used mostly as powders, granules or in a paste. Sintered scaffolds are not used clinically, because of the in inherent problem of crystallization during the sintering process, resulting in poor mechanical properties and reduced bioactivity. The aim of this study was therefore to design new bioactive glasses, which combine improved processing and sintering with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkalioxide ratio was increased, sodiumoxide was partially replaced by potassiumoxide and up to 8 mol% calciumflorid were added, in order to stabilize the glass against crystallization. The sintering behavior of the new glasses was characterized by heating microscopy and compared to Bioglass® 45S5. The results showed that the new glasses achieved a sintered density of 88-99 % in contrast to only 57-67% for Bioglass® 45S5. In addition FTIR and XRD analyses showed that Bioglass® 45S5 crystallized during sintering while for the new glasses no crystalline phases were detected. The thermal properties of all glasses were studied by DTA and DSC measures, and the influence of grain size and heating rate were characterized. These studies showed a shift of start and end temperature of sintering process as well as the final density. The structure of sintered specimens during and after sintering was examined using light and electron microscopy (REM).zeige mehrzeige weniger

Volltext Dateien herunterladen

  • New bioactive glasses with improved sintering behavior - Poster Crystallisation 2015 C Blaess.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Carsten Blaeß
Koautoren/innen:Stefan Reinsch, Ralf Müller, D. Groh, F. Döhler, D. S. Brauer
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Bioactive; Crystallization; Glass; Sintering
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:Crystallization 2015
Veranstaltungsort:Nagaoka, Japan
Beginndatum der Veranstaltung:11.10.2015
Enddatum der Veranstaltung:14.10.2015
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:17.11.2016
Referierte Publikation:Nein