• Treffer 12 von 0
Zurück zur Trefferliste

Fire stability of fibre reinforced polymer composites: sandwich panels and fuselage shells

  • The fire resistance of load-bearing composite components, e.g. sandwich panels in transportation or stringer reinforced shells used for fuselages, differs in comparison to metal systems. Fibres behave rather inert with respect to pyrolysis reducing burn-through phenomena. The fire stability becomes the main task, because it already breaks down when reaching the softening temperature of the matrix. Fire protection concepts are needed based on efficient thermal insulation and tailored for composite structures. The fire behaviour of fibre reinforced polymeric composites differs in comparison to polymers. Fibres behave often inert with respect to pyrolysis, they change dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue and so on. Their fire behaviour becomes somewhat singular. The fire resistance of load-bearing composite components, e.g. sandwich panels for transportation or stringer reinforced shells used for fuselages in aviation,The fire resistance of load-bearing composite components, e.g. sandwich panels in transportation or stringer reinforced shells used for fuselages, differs in comparison to metal systems. Fibres behave rather inert with respect to pyrolysis reducing burn-through phenomena. The fire stability becomes the main task, because it already breaks down when reaching the softening temperature of the matrix. Fire protection concepts are needed based on efficient thermal insulation and tailored for composite structures. The fire behaviour of fibre reinforced polymeric composites differs in comparison to polymers. Fibres behave often inert with respect to pyrolysis, they change dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue and so on. Their fire behaviour becomes somewhat singular. The fire resistance of load-bearing composite components, e.g. sandwich panels for transportation or stringer reinforced shells used for fuselages in aviation, differs in comparison to metal systems. Not burn-through, but the fire stability is typical critical mode of failure. The mechanical failure in fully developed fires can not be explained by the mechanical properties at room temperature, but are controlled by the decomposition and even more important by the softening of the matrix. Fire retardancy concepts are needed based on efficient thermal insulation and tailored for composites. This field is illuminated by examples taken from different projects carried out in the group of the presenting author in the recent years,[1-5] and still running unpublished activities as well. The fire stability is investigated for realistic compression loads, when a severe flame is directly applied (key property in fully developed fires). A bench scale specimen (specimen 150 mm x 150 mm, plates, sandwich, shells) and an intermediate scale (specimen 500 mm x 500 mm, plates, sandwich, shells) fire stability testing was performed. Indeed, e.g. we have investigated the fire stability of stringer reinforced shell components taken out from the fuselage of an aircraft. We applied mechanical load up to 233 kN and 1 MN in the bench-scale and intermediate-scale testing, respectively, and direct flame exposure using burners (180 kW/m2) simultaneously. The understanding of the fire resistance and fire protection modes of action in composite and composite components is a promising basis for target-oriented development. The role of the fire residue, protective layer formation, and the design of the components is discussed. Successful concepts are presented for increasing the fire resistance of load-bearing composite components as well as general guidelines for future development.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Schartel_CIF_FRPM.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Bernhard SchartelORCiD
Koautor*innen:Sebastian Timme, Andreas Hörold, Volker Trappe, Manfred Korzen
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Carbon fibre reinforced composites; Composites in fire; Fire resistance testing; Fire stability
Veranstaltung:FRPM 2017, 16th European Meeting on Fire Retardant Polymeric Materials
Veranstaltungsort:Manchester, UK
Beginndatum der Veranstaltung:03.07.2017
Enddatum der Veranstaltung:06.07.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:11.07.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.