• Treffer 6 von 0
Zurück zur Trefferliste

Additive manufacturing of geopolymers by selective laser curing

  • Additive manufacturing (3D printing) of ceramics and other materials offers significant advantages compared to conventional production processes for several applications. While ceramics have been extensively investigated in this regard, additive manufacturing of geopolymers have received much less attention to date. In the present contribution we study a ‘standard’ metakaolin-based geopolymer, a fly ash-based geopolymer and a silica-based one-part geopolymer regarding their suitability for additive manufacturing via selective laser curing. Model geometries such as bars and cuboids could be produced by this route. After selective laser curing the specimens were additionally cured at 80 °C for 24 h. The specimens were studied by means of scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). SEM showed that the precursors in all geopolymers had reacted partially and geopolymeric gel had formed. XRD confirmed these results and additionally revealed that the crystallineAdditive manufacturing (3D printing) of ceramics and other materials offers significant advantages compared to conventional production processes for several applications. While ceramics have been extensively investigated in this regard, additive manufacturing of geopolymers have received much less attention to date. In the present contribution we study a ‘standard’ metakaolin-based geopolymer, a fly ash-based geopolymer and a silica-based one-part geopolymer regarding their suitability for additive manufacturing via selective laser curing. Model geometries such as bars and cuboids could be produced by this route. After selective laser curing the specimens were additionally cured at 80 °C for 24 h. The specimens were studied by means of scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). SEM showed that the precursors in all geopolymers had reacted partially and geopolymeric gel had formed. XRD confirmed these results and additionally revealed that the crystalline byproducts (zeolites) in the one-part geopolymer differed from the byproducts observed in conventionally produced samples. This indicates that also the geopolymerization reactions differ between the two synthesis routes. The mechanical strength after selective laser curing and 80 °C-curing appeared to be highest for the metakaolin-based geopolymer. However, SEM also showed that a significant volume of macropores remained in most regions of all specimens, while some regions in the metakaolin-based geopolymer appeared to be significantly denser. These preliminary results demonstrate that selective laser curing offers potential for the production of geopolymers, but more research has to be undertaken to optimize the process.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2017_POSTER_DKG-Jahrestagung_AM of geopolymers_Druck.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Gregor GluthORCiD
Koautor*innen:Patrick Sturm, Jörg Lüchtenborg, Petr Hlavácek, Jens Günster, Hans-Carsten Kühne
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:3D printing; Additive manufacturing; Geopolymers; Inorganic polymers; Selective laser curing
Veranstaltung:92. DKG Jahrestagung
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:19.03.2017
Enddatum der Veranstaltung:22.03.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:24.03.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.