• Treffer 19 von 0
Zurück zur Trefferliste

Unique growth behavior of ferroelastic beta’-Gd2(MoO4)3 crystals in glasses

  • An understanding on crystallization behavior and kinetics in glasses is one of the important topics in the glass science and technology. Tsukada et al.1) found an extremely unique and curious phenomenon in the crystallization of multiferroic (ferroelectric and ferroelastic properties) ’-Gd2(MoO4)3 crystals in Gd2O3-MoO3-B2O3 glasses. That is, crystals formed in the crystallization break into small pieces with a triangle prism or pyramidal shape having a length of 50-150 um spontaneously during the crystallization in the inside of an electric furnace, not during the cooling in air after the crystallization. They proposed to call this phenomenon “self-powdering phenomenon”. To the best of our knowledge, such a self-powdering phenomenon has not been observed in the crystallization of any other glasses. To investigate this phenomenon is very important for the glass science and for the preparation of bulk crystallized glasses with ferroelastic crystals. In this work, the preparation ofAn understanding on crystallization behavior and kinetics in glasses is one of the important topics in the glass science and technology. Tsukada et al.1) found an extremely unique and curious phenomenon in the crystallization of multiferroic (ferroelectric and ferroelastic properties) ’-Gd2(MoO4)3 crystals in Gd2O3-MoO3-B2O3 glasses. That is, crystals formed in the crystallization break into small pieces with a triangle prism or pyramidal shape having a length of 50-150 um spontaneously during the crystallization in the inside of an electric furnace, not during the cooling in air after the crystallization. They proposed to call this phenomenon “self-powdering phenomenon”. To the best of our knowledge, such a self-powdering phenomenon has not been observed in the crystallization of any other glasses. To investigate this phenomenon is very important for the glass science and for the preparation of bulk crystallized glasses with ferroelastic crystals. In this work, the preparation of crystallized glasses keeping the original shape is challenged, and the mechanism of self-powdering phenomenon is proposed. Glasses with the compositions of 21Gd2O3-63MoO3-(16-x)B2O3-xTeO2 (mol%) (x=0, 2, 4, 8) such as 21Gd2O3-63MoO3-16B2O3 (GM16B) and 21Gd2O3-63MoO3-8B2O3-8TeO2 (GM8T8B) were prepared using a conventional melt quenching technique. The quenched glasses were heat-treated at some temperatures, and the crystalline phase present in the crystallized samples was identified by X-ray diffraction (XRD) analyses, and the morphology and birefringence of crystals formed were observed using a polarized optical microscope (POM). The densities of GM16B and GM8T8B glasses are 4.76 g/cm3 and 4.91 g/cam3, respectively, and these values are higher than the density of ’-Gd2(MoO4)3 crystal, 4.555 g/cm3. These differences in the density might induce the large stresses in the inside of crystals during the crystal growth. The crystallized glasses of GM16B with ’-Gd2(MoO4)3 crystals do not keep the original glass shape, showing self-powdering phenomenon (breaking into small pieces). However, the crystallized glasses of GM8T8B keep the original glass shape without indicating any self-powdering. It is proposed that the stress at the interface between the glassy phase and ’-Gd2(MoO4)3 crystalline phase might be reduced in GM8T8B glasses containing TeO2 with weak Te-O bonds.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 12th crystallization_kotaka.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:M. Kotaka
Koautor*innen:T. Honma, K. Shinozaki, M. Affatigato, Ralf Müller, T. Komatsu
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Crystallization; Glass; Self-powdering
Veranstaltung:Crystallization 2017
Veranstaltungsort:Segovia, Spain
Beginndatum der Veranstaltung:10.09.2017
Enddatum der Veranstaltung:13.09.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:07.03.2018
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.