Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 50 von 360
Zurück zur Trefferliste

Manufacturing of SiO2-Coated b-TCP Structures by 3D Printing using a Preceramic Polymer as Printing Binder and Silica Source

  • Tricalcium phosphate (b-TCP) can be used as bone graft, exhibiting suitable bioabsorption and osteoconduction properties. The presence of silica may induce the formation of a hydroxyapatite layer, enhancing the integration between implant and bone tissue. Preceramic polymers present silicon in their composition, being a source of SiO2 after thermal treatment. Using the versatility of 3D printing, b-TCP and a polysiloxane were combined to manufacture a bulkb-TCP with a silica coating. For the additive manufacturing process, PMMA powder was used as passive binder for the b-TCP particles, and polymethylsilsesquioxane (MK), dissolved in an organic solvent, was used both as a printing binder (ink) and as the source of SiO2 for the coating. Five distinct coating compositions were printed with increasing amounts of MK. The structures were then submitted to heat treatment at 1180 °C for 4 h. XRD and FTIR showed no chemical reaction between the calcium phosphate and silica. SEM allowedTricalcium phosphate (b-TCP) can be used as bone graft, exhibiting suitable bioabsorption and osteoconduction properties. The presence of silica may induce the formation of a hydroxyapatite layer, enhancing the integration between implant and bone tissue. Preceramic polymers present silicon in their composition, being a source of SiO2 after thermal treatment. Using the versatility of 3D printing, b-TCP and a polysiloxane were combined to manufacture a bulkb-TCP with a silica coating. For the additive manufacturing process, PMMA powder was used as passive binder for the b-TCP particles, and polymethylsilsesquioxane (MK), dissolved in an organic solvent, was used both as a printing binder (ink) and as the source of SiO2 for the coating. Five distinct coating compositions were printed with increasing amounts of MK. The structures were then submitted to heat treatment at 1180 °C for 4 h. XRD and FTIR showed no chemical reaction between the calcium phosphate and silica. SEM allowed observation of a silicon-based ating on the structure surface. Mechanical strength of the sintered porous structures was within the range of that of trabecular bones.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 10.4416_JCST2017-00056.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:R. Bernardino, C. Wirth, S.L. Stares, G.V. Salmoria, D. Hotza, Jens Günster
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal Ceramic Science Technology
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.4 Keramische Prozesstechnik und Biowerkstoffe
Verlag:Göller Verlag
Verlagsort:76532 Baden-Baden
Jahrgang/Band:9
Ausgabe/Heft:1
Erste Seite:37
Letzte Seite:41
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:3D-Printing; Bone regeneration; Preceramic polymer; Tricalcium Phosphate
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialien und Stoffe
DOI:https://doi.org/10.4416/JCST2017-00056
URL:http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=WOS:000429731000005
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:15.08.2018
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:15.08.2018