• Treffer 3 von 0
Zurück zur Trefferliste

Residual stress fields in AM Ni-718 in as built and after release from baseplate

  • The residual stress distribution of IN718 parts produced by Selective Laser Melting (SLM) technique was studied by means of neutron diffraction. Two deposition hatching lengths were considered in the fabrication. Both lateral (building direction) and top (finishing) near-surface regions were characterized. Measurements on samples in as-built condition and after release from the plate proved the presence of stress gradients both in-plane and along the building direction. As-built samples presented in top region a longitudinal stress relief for large hatching, whereas small one showed tensile stresses around (200MPa) in the middle, evolving towards compression at the tip of the sample (down to -300MPa). Towards the lateral edge, longitudinal stresses shifted also to compression. The transverse stresses for large hatching were relief in the middle, whereas for small hatching shifted to compression at the edge. As for the normal component, this was more homogenous: stress-relief wasThe residual stress distribution of IN718 parts produced by Selective Laser Melting (SLM) technique was studied by means of neutron diffraction. Two deposition hatching lengths were considered in the fabrication. Both lateral (building direction) and top (finishing) near-surface regions were characterized. Measurements on samples in as-built condition and after release from the plate proved the presence of stress gradients both in-plane and along the building direction. As-built samples presented in top region a longitudinal stress relief for large hatching, whereas small one showed tensile stresses around (200MPa) in the middle, evolving towards compression at the tip of the sample (down to -300MPa). Towards the lateral edge, longitudinal stresses shifted also to compression. The transverse stresses for large hatching were relief in the middle, whereas for small hatching shifted to compression at the edge. As for the normal component, this was more homogenous: stress-relief was proved for large hatching and, in contrast, was in compression (-200MPa) for small hatching. In the building direction (lateral region from base plate to top) of the sample with large hatching all stress components showed tensile values near the base plate (particularly high for normal component around 300MPa), decreasing towards compression to the top, where they were almost released. After release, in the top region, the longitudinal stress component for small hatching showed high compressive stresses in the central part (down to -250MPa). In contrast, for large hatching a stress relief was found. In the transversal direction, this behavior was inverted: a small hatching released stresses more effectively, while a large hatching presented high tensile stresses (around 200MPa). As for the normal component (i.e., building direction), the sample with small hatching was found in compression, while that with large hatching was stress-released or slightly in tension (around 100MPa). In the lateral surface region, all components showed similar behavior: a small hatching promoted high compressive stresses along the building direction, whereas a large hatching showed small tensile values at the bottom, which balance towards the top region. There is an overall shift of stresses in 3 directions towards tension when compared with as-built condition for top region. In contrast, the lateral region is stress-relief or shifted towards compression after cutting from baseplate. In conclusion, hatching length parameter strongly influenced the 3D distribution of residual stress in SLM produced parts.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • MECA SENS 2017- Cabeza.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Sandra Cabeza
Koautor*innen:Tobias Thiede, Tatiana Mishurova, Naresh Nadammal, Arne Kromm, Giovanni Bruno
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Additive manufacturing; Neutron diffraction; Residual stress; Selective laser melting
Veranstaltung:MECA SENS 2017
Veranstaltungsort:Skukuza, South Africa
Beginndatum der Veranstaltung:19.09.2017
Enddatum der Veranstaltung:21.09.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:21.09.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.