Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 55 von 324
Zurück zur Trefferliste

Numerical calculation of 𝛥CTOD to simulate fatigue crack growth under large scale viscoplastic deformations

  • Crack propagation under low cycle fatigue and thermomechanical fatigue is characterized by high plastic and creep strains that extend over large regions around the crack, so that concepts of linear-elastic fracture mechanics cannot be applied. In these cases, the cyclic crack tip opening displacement 𝛥CTOD is a promising loading parameter to quantify crack growth. In this work, suitable definitions and Finite Element techniques are investigated and compared for an accurate calculation of 𝛥CTOD under cyclic mechanical and/or thermal loading. A viscoplastic temperature dependent material model of Chaboche-type is used along with large strain settings, specified for the austenitic cast iron Ni-resist. Extensive two-dimensional analyses of Single Edge Notch Tension specimens revealed that collapsed special crack tip elements are superior compared with commonly used regular quadrilateral 8-node elements. At the same level of accuracy of 𝛥CTOD, they require an about ten times coarser meshCrack propagation under low cycle fatigue and thermomechanical fatigue is characterized by high plastic and creep strains that extend over large regions around the crack, so that concepts of linear-elastic fracture mechanics cannot be applied. In these cases, the cyclic crack tip opening displacement 𝛥CTOD is a promising loading parameter to quantify crack growth. In this work, suitable definitions and Finite Element techniques are investigated and compared for an accurate calculation of 𝛥CTOD under cyclic mechanical and/or thermal loading. A viscoplastic temperature dependent material model of Chaboche-type is used along with large strain settings, specified for the austenitic cast iron Ni-resist. Extensive two-dimensional analyses of Single Edge Notch Tension specimens revealed that collapsed special crack tip elements are superior compared with commonly used regular quadrilateral 8-node elements. At the same level of accuracy of 𝛥CTOD, they require an about ten times coarser mesh and show less sensitivity w.r.t. element size for both stationary and propagating cracks. In order to simulate fatigue crack growth, an efficient, fully automated FE-technique is developed for an incremental crack propagation by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and 𝛥CTOD value.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-S001379442300022X-main.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Stephan Gesell, R. Ganesh, Bernard Fedelich, M. Kuna, B. Kiefer
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Engineering Fracture Mechanics
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.5 Materialmodellierung
Verlag:Elsevier Ltd.
Jahrgang/Band:281
Ausgabe/Heft:109064
Erste Seite:1
Letzte Seite:23
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Crack growth; Crack tip opening displacement; Finite element analysis; Low cycle fatigue
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Degradation von Werkstoffen
DOI:10.1016/j.engfracmech.2023.109064
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:23.01.2023
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:06.03.2023
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.