• Treffer 1 von 22
Zurück zur Trefferliste

A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration

  • Using continuum damage mechanics (CDM) for lifetime prediction requires numerical integration of evolving damage until the onset of failure. The primary challenge for the simulation of structural fatigue failure is caused by the enormous computational costs due to cycle-by-cycle temporal integration throughout the whole loading history, which is in the order of 103–107 cycles. As a consequence, most approaches circumvent this problem and use empirical methods such as Wöhler curves. They are well suited for approximating the lifetime, but they are not capable to capture a realistic degradation of the material including redistribution of stresses. The main objective of the paper is to provide a technique for finite element (FE) simulations of structures under fatigue loading while reducing computational costs. A Fourier transformation-based temporal integration (FTTI) scheme is proposed, which adapts the conventional FE method for modeling the viscoplastic deterioration in a structureUsing continuum damage mechanics (CDM) for lifetime prediction requires numerical integration of evolving damage until the onset of failure. The primary challenge for the simulation of structural fatigue failure is caused by the enormous computational costs due to cycle-by-cycle temporal integration throughout the whole loading history, which is in the order of 103–107 cycles. As a consequence, most approaches circumvent this problem and use empirical methods such as Wöhler curves. They are well suited for approximating the lifetime, but they are not capable to capture a realistic degradation of the material including redistribution of stresses. The main objective of the paper is to provide a technique for finite element (FE) simulations of structures under fatigue loading while reducing computational costs. A Fourier transformation-based temporal integration (FTTI) scheme is proposed, which adapts the conventional FE method for modeling the viscoplastic deterioration in a structure subjected to cyclic loading. The response fields are represented by a Fourier series which assumes a temporal scale separation: a microchronological (short time) scale arises from the oscillatory loading and a macrochronological (long time) scale is due to the slow material relaxation resulting from yielding and damage evolution. The original dynamic boundary value problem (BVP) is approximated by the stationary BVP on the microchronological scale. Alternation of the displacement field on the macrochronological scale is correlated with evolution of the history variables by means of a high order adaptive cycle jump method. Performance and significant acceleration of the FE simulations is demonstrated at different loading scenarios for a constitutive damage model where the progressive damage accumulation is driven by viscoplastic yielding.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2017_ijf_kindrachuk.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Jörg F. Unger, Vitaliy Kindrachuk
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):International Journal of Fatigue
Jahr der Erstveröffentlichung:2017
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.2 Experimentelle und modellbasierte Werkstoffmechanik
7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.0 Abteilungsleitung und andere
Verlag:Elsevier Ltd.
Jahrgang/Band:100
Ausgabe/Heft:1
Erste Seite:215
Letzte Seite:228
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Accelerated time integration; Continuum damage mechanics; Fatigue; Fourier series
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Material
DOI:https://doi.org/10.1016/j.ijfatigue.2017.03.015
URL:http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=WOS:000402217000021
ISSN:0142-1123
ISSN:1879-3452
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:03.04.2017
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:15.06.2017