• Treffer 1 von 16
Zurück zur Trefferliste

Thermochemical treatment of waste products from iron and steel production

  • Blast furnace (BF) sludge and electric arc furnace (EAF) dust are typical wastes that incur from iron and steel production. In addition to iron, calcium, carbon, and silicon they usually contain high concentrations of heavy metals such as zinc, lead, and cadmium that are potentially hazardous to the environment, rendering disposal in landfills ecologically problematic and costly. Consequently, pyrometallurgical, hydrometallurgical, and hybrid methods for selective elimination of non-ferrous heavy metals from BF sludge and EAF dust have been conceived, of which only the carbothermic reduction route taken in the so-called Waelz rotary kiln process has been proven to be economically successful. However, this process has several drawbacks regarding efficiency of heavy-metal removal and recovery of iron, and it does not allow processing of BF sludge. In this study, we investigated the efficiency and feasibility of selective chlorination and evaporation of non-ferrous heavy metals,Blast furnace (BF) sludge and electric arc furnace (EAF) dust are typical wastes that incur from iron and steel production. In addition to iron, calcium, carbon, and silicon they usually contain high concentrations of heavy metals such as zinc, lead, and cadmium that are potentially hazardous to the environment, rendering disposal in landfills ecologically problematic and costly. Consequently, pyrometallurgical, hydrometallurgical, and hybrid methods for selective elimination of non-ferrous heavy metals from BF sludge and EAF dust have been conceived, of which only the carbothermic reduction route taken in the so-called Waelz rotary kiln process has been proven to be economically successful. However, this process has several drawbacks regarding efficiency of heavy-metal removal and recovery of iron, and it does not allow processing of BF sludge. In this study, we investigated the efficiency and feasibility of selective chlorination and evaporation of non-ferrous heavy metals, particularly zinc and lead, in both BF sludge and EAF dust as an alternative, thermochemical processing route. To this end, hydrochloric acid and iron(II) chloride solution have been used as chlorinating agents, and the process of heavy-metal chlorination and evaporation has been investigated under inert operating conditions, at variable chlorine concentrations, and at temperatures between 500 and 1200 °C. High zinc and lead removal efficiencies of > 99.5 % were achieved with both chlorinating agents, but iron(II) chloride turned out to be overall more efficient for removal of zinc and lead from BF sludge and EAF dust. Interestingly, and in contrast to previous studies, the iron was completely retained in the processed solid residue, therefore rendering the processed residues virtually zinc- and lead-free raw materials that may either be used internally (e.g., feeding processed BF sludge and EAF dust back into the respective furnaces) or externally (e.g., for cement production).zeige mehrzeige weniger

Volltext Dateien herunterladen

  • EMC-2019_Vol-3_P-1267-1282_Hamann.pdf
    eng
  • EMC-2019_Vol3_Impressum.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Christopher Hamann, Christian Adam, Dirk Stolle, M. Spanka, G. Auer
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Proceedings, European Metallurgical Conference 2019
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:4 Material und Umwelt
4 Material und Umwelt / 4.4 Thermochemische Reststoffbehandlung und Wertstoffrückgewinnung
Verlag:GDMB
Verlagsort:Clausthal-Zellerfeld
Jahrgang/Band:3
Erste Seite:1267
Letzte Seite:1282
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Blast furnace sludge; Electric arc furnace dust; Recycling; Selective chlorination; Zinc
Themenfelder/Aktivitätsfelder der BAM:Umwelt
Umwelt / Ressourcenrückgewinnung und Materialverwertung
Veranstaltung:European Metallurgical Conference 2019
Veranstaltungsort:Düsseldorf, Germany
Beginndatum der Veranstaltung:23.06.2019
Enddatum der Veranstaltung:26.06.2019
ISBN:978-3-940276-89-6
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:02.07.2019
Referierte Publikation:Nein