• Treffer 8 von 0
Zurück zur Trefferliste

Microbially induced corrosion development of new analytical tools to study biofilm formation and corrosion processes

  • Microbially induced corrosion (MIC) is a severe cost and risk factor for the oil and gas industry, water heat- and cooling systems, waste water management, and infrastructural constructions. The industrial preventions management of MIC focuses on eliminating present microorganisms, which leads to the repeated and time-consuming application of biocides. However, biocides are often only minor effective for microorganisms that live protected from these agents in a biofilm matrix formed on material surfaces. In recent years, microbiologist have renewed our vision on the electrochemical processes underlying material corrosion induced by sulfate reducing bacteria, but the knowledge at the level of multispecies biofilm formation and the effects of material’s properties are still rather scarce. Therefore, an interdisciplinary team of material scientists, chemists and microbiologists, established a MIC-research platform at the Federal Institute for Materials Research and Testing (BAM) toMicrobially induced corrosion (MIC) is a severe cost and risk factor for the oil and gas industry, water heat- and cooling systems, waste water management, and infrastructural constructions. The industrial preventions management of MIC focuses on eliminating present microorganisms, which leads to the repeated and time-consuming application of biocides. However, biocides are often only minor effective for microorganisms that live protected from these agents in a biofilm matrix formed on material surfaces. In recent years, microbiologist have renewed our vision on the electrochemical processes underlying material corrosion induced by sulfate reducing bacteria, but the knowledge at the level of multispecies biofilm formation and the effects of material’s properties are still rather scarce. Therefore, an interdisciplinary team of material scientists, chemists and microbiologists, established a MIC-research platform at the Federal Institute for Materials Research and Testing (BAM) to study the effects of material’s properties and biofilm formation on MIC. Using femtosecond laser pulse technology steel surfaces with defined nanostructures were manufactured. The test pieces were incubated using a flow-through chambers setup with different organisms relevant for biofilm studies. Our studies showed, that nanoscale structures severely affect the biofilm thickness and, hence, growth for health threatening organisms like E. coli and S. aureus, but also for MIC-relevant bacteria such as Fe(III)-reducing Shewanella spec. Another aspect of the biofilm matrix is the establishment of microscale environments with conditions, such as anaerobic or acidic microenvironments, which promotes a diverse multispecies community. However, the detection and visualization of such small-scale microenvironments is rather challenging. Further, it could directly indicate the activity of microorganism influencing or inducing corrosion processes. Therefore, dye-stained nanoscale particles, bearing pH-responsive fluorophores at the surface, were developed to measure the pH at the biofilm’s surface and within the matrix using confocal laser scanning microcopy. The particles will be further advanced to measure other environmentally relevant parameters, including oxygen concentration, and concentrations of selected metal ions indicative of corrosion of e.g., materials used for water pipelines. In the future, our platform and its analytical tools will be employed to study the formation of biofilms in dependency of the respective support material, its surface properties like roughness, and the microbial community.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • VAAM 2017_Sameith.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Janin Sameith
Koautor*innen:Karin Schwibbert, Harald Tschiche, Nadja Epperlein, Friederike Menzel, Katrin Hoffmann, Jörg Krüger, Ute Resch-Genger, Hans-Jörg Kunte
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Biophotonik; LIPSS; MIC; Nanoparticel based pH-probes
Veranstaltung:VAAM Jahrestagung
Veranstaltungsort:Würzburg, Germany
Beginndatum der Veranstaltung:05.03.2017
Enddatum der Veranstaltung:08.03.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.03.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.