• Treffer 7 von 3
Zurück zur Trefferliste

Sub-aerial biofilms as blockers of solar radiation: spectral properties as tools to charcterise material-relevant microbial growth

  • Sub-aerial biofilms (SABs) are ubiquitous microbial communities that develop at the interface between hard surfaces and the atmosphere. Inherent SAB 'core-settlers' include phototrophic algae, cyanobacteria, heterotrophic bacteria and microcolonial fungi (MCF). SABs do not simply cover hard surfaces; they interact with them in myriads of ways and bind to the underlying substrate. Secretion of extracellular mucilage aids adhesion, while organic acids and acidic polysaccharides weather the surface. As protection against solar radiation, many members of the SAB consortia produce shielding pigments while the phototrophic inhabitants are laden with photosynthetic pigments. All absorb light of many wavelengths and in addition, the cells themselves scatter light. Both effects change the spectra of incoming radiation (including wavelengths that are converted to electricity by photovoltaic cells) and decrease its intensity. To quantify these effects on SABs as complex entities of organisms andSub-aerial biofilms (SABs) are ubiquitous microbial communities that develop at the interface between hard surfaces and the atmosphere. Inherent SAB 'core-settlers' include phototrophic algae, cyanobacteria, heterotrophic bacteria and microcolonial fungi (MCF). SABs do not simply cover hard surfaces; they interact with them in myriads of ways and bind to the underlying substrate. Secretion of extracellular mucilage aids adhesion, while organic acids and acidic polysaccharides weather the surface. As protection against solar radiation, many members of the SAB consortia produce shielding pigments while the phototrophic inhabitants are laden with photosynthetic pigments. All absorb light of many wavelengths and in addition, the cells themselves scatter light. Both effects change the spectra of incoming radiation (including wavelengths that are converted to electricity by photovoltaic cells) and decrease its intensity. To quantify these effects on SABs as complex entities of organisms and pigments, we measured the spectral properties of model and natural biofilms transferred to glass. Here we show that SABs growing on solar panels and other substrates scatter incident radiation between 250 nm up to 1800 nm and block up to 70% of its transmission. Model biofilms have the advantage that their microbial components can be 'tuned' to resemble natural ones of different compositions thus providing a novel materials-testing tool.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-S0964830513003442-main.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Steffi Noack-Schönmann, Olga Spagin, Klaus-Peter Gründer, Mathias Breithaupt, Achim Günther, Bernd Muschik, Anna GorbushinaORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):International biodeterioration & biodegradation
Jahr der Erstveröffentlichung:2014
Verlag:Elsevier
Verlagsort:Barking
Jahrgang/Band:86
Erste Seite:286
Letzte Seite:293
Freie Schlagwörter:Biofilm-impaired transmittance of radiation; Glass biodeterioration; Material-colonising microorganisms; Microcolonial fungi; Solar panels
DOI:10.1016/j.ibiod.2013.09.020
ISSN:0964-8305
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:10.02.2014
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.