• Treffer 2 von 237
Zurück zur Trefferliste

Active antibacterial and antifouling surface coating via a facile one-step enzymatic cross-linking

  • Prevention of microbial contamination of surfaces is one of the biggest challenges for biomedical applications. Establishing a stable, easily produced, highly antibacterial surface coating offers an efficient solution but remains a technical difficulty. Here, we report on a new approach to create an in situ hydrogel film-coating on glass surfaces made by enzymatic cross-linking under physiological conditions. The cross-linking is catalyzed by horseradish peroxidase (HRP)/glucose oxidase (GOD)-coupled cascade reactions in the presence of glucose and results in 3D dendritic polyglycerol (dPG) scaffolds bound to the surface of glass. These scaffolds continuously release H2O2 as long as glucose is present in the system. The resultant polymeric coating is highly stable, bacterial-repellent, and functions under physiological conditions. Challenged with high loads of bacteria (OD540 = 1.0), this novel hydrogel and glucose-amended coating reduced the cell viability of Pseudomonas putidaPrevention of microbial contamination of surfaces is one of the biggest challenges for biomedical applications. Establishing a stable, easily produced, highly antibacterial surface coating offers an efficient solution but remains a technical difficulty. Here, we report on a new approach to create an in situ hydrogel film-coating on glass surfaces made by enzymatic cross-linking under physiological conditions. The cross-linking is catalyzed by horseradish peroxidase (HRP)/glucose oxidase (GOD)-coupled cascade reactions in the presence of glucose and results in 3D dendritic polyglycerol (dPG) scaffolds bound to the surface of glass. These scaffolds continuously release H2O2 as long as glucose is present in the system. The resultant polymeric coating is highly stable, bacterial-repellent, and functions under physiological conditions. Challenged with high loads of bacteria (OD540 = 1.0), this novel hydrogel and glucose-amended coating reduced the cell viability of Pseudomonas putida (Gram-negative) by 100% and Staphylococcus aureus (Gram-positive) by ≥40%, respectively. Moreover, glucose-stimulated production of H2O2 by the coating system was sufficient to kill both test bacteria (at low titers) with >99.99% Efficiency within 24 h. In the presence of glucose, this platform produces a coating with high effectiveness against bacterial adhesion and survival that can be envisioned for the applications in the glucose-associated medical/oral devices.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • full paper.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:C. Wu, Karin Schwibbert, K. Achazi, Petra Landsberger, Anna Gorbushina, R. Haag
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Biomacromolecules
Jahr der Erstveröffentlichung:2017
Organisationseinheit der BAM:4 Material und Umwelt
4 Material und Umwelt / 4.1 Biologische Materialschädigung und Referenzorganismen
Jahrgang/Band:18
Ausgabe/Heft:1
Erste Seite:210
Letzte Seite:216
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Antifouling; Bacterial adhesion; Biofilm; Surface coating
Themenfelder/Aktivitätsfelder der BAM:Material
DOI:https://doi.org/10.1021/acs.biomac.6b01527
URL:http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=WOS:000391781100020
ISSN:1525-7797
ISSN:1526-4602
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.01.2017
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:09.02.2017