• Treffer 7 von 0
Zurück zur Trefferliste

Core-shell systems - different cases

  • Coating, stabilization layers, functionalization of particles or simple contamination are common variants of a core-shell system. For smaller nanoparticles this is of major importance. A particle with 16 nm diameter and a usual surface layer of 2 nm will have the same volume for the core as for the shell. In this case the material of the particle doesn’t have a clear definition. It is a common case that a particle consists of four different layers: Core, shell, stabilization layer and contamination. The properties of the particles differ according to this structure. For example silver particles might have a different dissolution rate for pure particles and for particles which are grown on top of a core. Different solubility or defined other properties of materials is a common reason for producing core-shell systems. Gold cores are surrounded by silica to stabilize them or to get a defined distance between the cores. Silica might be surrounded by gold and the silica dissolvedCoating, stabilization layers, functionalization of particles or simple contamination are common variants of a core-shell system. For smaller nanoparticles this is of major importance. A particle with 16 nm diameter and a usual surface layer of 2 nm will have the same volume for the core as for the shell. In this case the material of the particle doesn’t have a clear definition. It is a common case that a particle consists of four different layers: Core, shell, stabilization layer and contamination. The properties of the particles differ according to this structure. For example silver particles might have a different dissolution rate for pure particles and for particles which are grown on top of a core. Different solubility or defined other properties of materials is a common reason for producing core-shell systems. Gold cores are surrounded by silica to stabilize them or to get a defined distance between the cores. Silica might be surrounded by gold and the silica dissolved afterwards. This delivers hollow shells. Another important example for core-shell systems are quantum dots. A small core is surrounded by a different material for increasing the photoluminescence. Furthermore there a stabilization layer is needed. The smallest part of the final particles is the initial core. The photoluminescence is based on this core, but the shells contain much more material. Categorization should address this. Core-shell systems are not covered by most of the existing decision trees for grouping. They are either regarded as special case or a singular layer. This disqualifies core-shell systems for grouping within the common models. There might be a very easy way to avoid this problem and even to combine some of the different decision trees. Starting the decision tree with the solubility of the outer shell and subsequently addressing the inner layers will be a pragmatic approach to solve the problem. If there is no shell, the categorization can start with a tiered approach or with the proposed “stawman” chemical categorization. If a shell is covering the surface there is a need to check if the shell is stable. If it is stable, the particle can be categorized based on this shell. If it is soluble, the ions need to be addressed as in the classic case. Furthermore the shell might increase the uptake by the cells. If the ions and the uptake are not critical the categorization can continue with the next layer. With this not perfect but pragmatic approach, the surface layers can be addressed with very limited additional efforts. Most criteria are based on classically tabulated data. Including a rating system like the precautionary matrix approach might even address the fact that some parameters are not always Yes/No, e.g. solubility, ion toxicity and uptake.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • OECD-ExpertMeeting-Grouping-2016.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Harald Bresch
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Grouping; Nano; Nanomaterials; Nanoparticles; OECD
Veranstaltung:OECD Expert Meeting on Grouping and Read Across for the Hazard Assessment of Manufactured Nanomaterials
Veranstaltungsort:Brussels, Belgium
Beginndatum der Veranstaltung:13.04.2016
Enddatum der Veranstaltung:14.04.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.04.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.