• Treffer 19 von 22
Zurück zur Trefferliste

Genetic manipulation of protective pigments in a rock-inhabiting model fungus Knufia petricola A95

  • Sub-aerial biofilms typically form on bare rock. They consist of 99% cell material and extracellular polymeric substances (EPS) metabolising at low water availability. Rock-inhabiting melanised fungi represent an important part of the microbial community in these environments, playing important roles in the colonisation of mineral surfaces, rock weathering and soil formation in the ecological/geochemical context. Different cellular stress responses make rock-inhabiting ascomycetes fit for survival under extremely changing irradiation, as well as water, energy sources and nutrient availability. Melanised, rock-inhabiting fungi possess multiple protective pigments, form facultative symbiotic associations with photobionts and weather minerals. Melanised fungi build a protective layer around the cell that is critical in adhesion to other living partners, for the colonisation of the substrate and in the subsequent damage of the colonised surface. We chose Knufia petricola (Chaetothyriales)Sub-aerial biofilms typically form on bare rock. They consist of 99% cell material and extracellular polymeric substances (EPS) metabolising at low water availability. Rock-inhabiting melanised fungi represent an important part of the microbial community in these environments, playing important roles in the colonisation of mineral surfaces, rock weathering and soil formation in the ecological/geochemical context. Different cellular stress responses make rock-inhabiting ascomycetes fit for survival under extremely changing irradiation, as well as water, energy sources and nutrient availability. Melanised, rock-inhabiting fungi possess multiple protective pigments, form facultative symbiotic associations with photobionts and weather minerals. Melanised fungi build a protective layer around the cell that is critical in adhesion to other living partners, for the colonisation of the substrate and in the subsequent damage of the colonised surface. We chose Knufia petricola (Chaetothyriales) as a model species to analyse colonisation of surfaces. The basic physiology of K. petricola strain A95 is studied, its full genome sequence has been prepared for annotation and methods for deleting specific genes have been established. Unique features of K. petricola including the protective pigments (melanin and carotenoids) and EPS/cell wall properties are now being dissected genetically. As K. petricola strain A95 is in the basic clade of Chaetothyriales, it is an ancestor of both important human pathogens including Exophiala and lichens from the Verrucariaceae family. For this reason studies with A95 can help clarify the basis of fungal pathogenicity – as well as explain interactions with microscopic phototrophic partners like unicellular green algae and cyanobacteria. With Knufia petricola we will establish a canon of experimental approaches to characterise and quantify fungi that actively contact inanimate solid materials. The set of methods developed for Knufia will be adapted to heavily melanised and EPS-producing ascomycetes and can be broadly applied to medically important as well as material-colonising fungi.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Gorbushina_Knabe_Poster GRC.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Anna Gorbushina
Koautoren/innen:Nicole Knabe, Romy Breitenbach, Polina Dementyeva
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:4 Material und Umwelt
4 Material und Umwelt / 4.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Biofilm; Knufia petricola A95; Model fungus
Themenfelder/Aktivitätsfelder der BAM:Umwelt
Veranstaltung:Gordon Research Conference (Cellular & Molecular Fungal Biology)
Veranstaltungsort:Holderness, NH, USA
Beginndatum der Veranstaltung:19.06.2016
Enddatum der Veranstaltung:24.06.2016
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:14.10.2016
Referierte Publikation:Nein