• Treffer 16 von 16
Zurück zur Trefferliste

Chemical interaction mechanisms of metal reducing bacteria on steel surfaces

  • Metal reducing bacteria (MRB) are able to utilize various materials such as iron, uranium and manganese as well as many organic compounds as electron acceptors. This process leads to the conversion of Fe(III) containing passive film species to soluble Fe(II) oxides and hydroxides. The reduction process triggers the acceleration of general and local corrosion processes. Electron transfer mechanisms are not yet fully understood. In literature it has been controversially discussed to which extend secreted electron shuttles contribute to the extracellular electron transfer (EET). To understand the chemical and electrochemical interaction mechanisms of MRB with steel surfaces this project combines a variety of in-situ techniques. The changes in oxide chemistry on Fe/steel surfaces in the presence of biomolecules and MRB are under investigation using a newly designed electrochemical cell for in situ XANES (x-ray absorption near edge structure) spectroscopy. Electrochemical quartz crystalMetal reducing bacteria (MRB) are able to utilize various materials such as iron, uranium and manganese as well as many organic compounds as electron acceptors. This process leads to the conversion of Fe(III) containing passive film species to soluble Fe(II) oxides and hydroxides. The reduction process triggers the acceleration of general and local corrosion processes. Electron transfer mechanisms are not yet fully understood. In literature it has been controversially discussed to which extend secreted electron shuttles contribute to the extracellular electron transfer (EET). To understand the chemical and electrochemical interaction mechanisms of MRB with steel surfaces this project combines a variety of in-situ techniques. The changes in oxide chemistry on Fe/steel surfaces in the presence of biomolecules and MRB are under investigation using a newly designed electrochemical cell for in situ XANES (x-ray absorption near edge structure) spectroscopy. Electrochemical quartz crystal microbalance (eQCM) studies support the spectroscopic investigations to gain information about the kinetics of attachment processes and changes in biofilm viscosity. The biofilm structure and composition as well as cell viability are investigated by complementary ex situ spectroscopic and microscopic analysis. Combining spectroscopic techniques and eQCM data with electrochemical measurements, biological processes and the resulting degradation of steel surfaces can be observed in a non-destructive manner. Selecting model systems and a defined biological medium allows the determination of individual effects of diverse surface and environmental parameters. The fundamental understanding of bacterial attachment mechanisms and initial steps of biofilm formation will contribute to the development of new antifouling strategies.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • NinaWurzler_BSR2016.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Nina Wurzler
Koautoren/innen:Ana Guilherme Buzanich, Martin Radtke, Uwe Reinholz, Franziska Emmerling, Hans-Jörg Kunte, Ozlem Ozcan
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
4 Material und Umwelt
6 Materialschutz und Oberflächentechnik
1 Analytische Chemie; Referenzmaterialien / 1.0 Abteilungsleitung und andere
4 Material und Umwelt / 4.0 Abteilungsleitung und andere
6 Materialschutz und Oberflächentechnik / 6.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Electrochemistry; Metal reducing bacteria; Microbially influenced corrosion (MIC); XANES
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:12th International Conference on Biology and Synchrotron Radiation
Veranstaltungsort:San Francisco, CA, USA
Beginndatum der Veranstaltung:21.08.2016
Enddatum der Veranstaltung:24.08.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:31.08.2016
Referierte Publikation:Nein