• Treffer 1 von 0
Zurück zur Trefferliste

Structural changes in plasmid DNA caused by radiation and its protection by Ectoine: an AFM analysis

  • Most ionizing radiation in water ends in an avalanche of low energy electrons which play a dominant role together with OH-radicals in damaging DNA. In the present study we irradiated plasmid DNA with electrons (primary energy 30keV) under physiological conditions, performed with as well as without Ectoine. Ectoine is a compatible solute, synthesized and accumulated in molar concentration within bacteria to withstand osmotic stress or different other stressors. Plasmid DNA (pUC19, 2686 bp) was studied due to its supercoiled isoform which is highly sensitive to radiation damage. In biochemistry gel electrophoresis is applied for structural analysis of DNA. Although it is a standard technique, a reliable discrimination of short fragments caused by radiation is often difficult. AFM is also commonly used for imaging susceptible biomolecules and, since it is based on a single molecule observation, for analysis of contour lengths of linear DNA as well. Therefore, in our study the structuralMost ionizing radiation in water ends in an avalanche of low energy electrons which play a dominant role together with OH-radicals in damaging DNA. In the present study we irradiated plasmid DNA with electrons (primary energy 30keV) under physiological conditions, performed with as well as without Ectoine. Ectoine is a compatible solute, synthesized and accumulated in molar concentration within bacteria to withstand osmotic stress or different other stressors. Plasmid DNA (pUC19, 2686 bp) was studied due to its supercoiled isoform which is highly sensitive to radiation damage. In biochemistry gel electrophoresis is applied for structural analysis of DNA. Although it is a standard technique, a reliable discrimination of short fragments caused by radiation is often difficult. AFM is also commonly used for imaging susceptible biomolecules and, since it is based on a single molecule observation, for analysis of contour lengths of linear DNA as well. Therefore, in our study the structural changes in plasmid DNA after irradiation with different doses were quantitatively analyzed by means of intermittent contact AFM. The figure shows representative AFM images of electron irradiated pUC19 DNA (bar=200nm). For AFM imaging the DNA was chemically fixed on ultra-smooth mica. As can be clearly seen, with increasing radiation dose the number of undamaged DNA declines and fragmented DNA arises (A, B). In aqueous Ectoine solution (1M) the effect of radiation on DNA is dramatically depressed. Ectoine apparently confers protection even against high radiation: the plasmids remain predominantly in the supercoiled isoform (D). Therefore, we strongly believe that Ectoine is a potent protective substance of DNA against ionizing radiation.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2017_AFMBioMed_Schroeter.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Maria-Astrid Schröter
Koautor*innen:Susann Meyer, Marc Benjamin Hahn, Tihomir Solomun, Hans-Jörg Kunte, Heinz Sturm
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:AFM; Ectoine; Electron radiation; Plasmid DNA
Veranstaltung:AFM BioMed
Veranstaltungsort:Krakau, Poland
Beginndatum der Veranstaltung:04.09.2017
Enddatum der Veranstaltung:08.09.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:21.09.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.