• Treffer 1 von 7
Zurück zur Trefferliste

Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron

  • Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possibleSulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ISMOS_Final Annie.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Biwen Annie An
Koautoren/innen:Andrea Koerdt, Sherin Kleinbub
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:4 Material und Umwelt
4 Material und Umwelt / 4.1 Biologische Materialschädigung und Referenzorganismen
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Archaea; Bacteria; Corrosion; Corrosion products; FIB/SEM; Iron; MIC
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Degradation von Werkstoffen und Materialien
Veranstaltung:7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7)
Veranstaltungsort:Halifax, Canada
Beginndatum der Veranstaltung:18.06.2019
Enddatum der Veranstaltung:21.06.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:30.10.2019
Referierte Publikation:Nein