Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 67 von 808
Zurück zur Trefferliste

Analytical Challenges for PFAS in Environmental Samples - Methods, Approaches and Applicability

  • Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered asPer- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered as persistent organic pollutants by the United Nations Stockholm Convention. These pollutants have been linked to altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. A significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) alternatives was observed in response to recently intensified regulations and restrictions on the use of long-chain (≥C8) PFAS. PFAS analysis in environmental samples is currently mainly done by liquid chromatography tandem mass spectrometry (LC-MS/MS). This efficient method is conducted in a targeted fashion analyzing a small subset of PFAS. The US EPA method for analysis of PFAS using LC-MS/MS for example currently lists 40 PFAS (≥C4). However, to get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Moreover, non-target and suspect screening mass spectrometry can be used to identify novel emerging PFAS and partly unknown fluorinated compounds in environmental samples. Furthermore, to analyze ultrashort PFAS (C1-C3), supercritical fluid chromatography (SFC), hydrophilic interaction chromatography (HILIC) and gas chromatography-mass spectrometry (GC-MS) are available, but further research is needed to develop reliable and accurate methods to quantify several ultrashort PFAS in environmental samples. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES)spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 20220912_Talk_CleanUp_Current Challanges on PFAS Analytics_Vogel_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christian Vogel
Koautor*innen:Philipp Roesch
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:4 Material und Umwelt
4 Material und Umwelt / 4.3 Schadstofftransfer und Umwelttechnologien
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Combustion ion chromatography; PFAS; XANES spectroscopy
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Umwelt
Veranstaltung:CleanUp 2022
Veranstaltungsort:Adelaide, Australia
Beginndatum der Veranstaltung:11.09.2022
Enddatum der Veranstaltung:15.09.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.09.2022
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.