• Treffer 88 von 805
Zurück zur Trefferliste

Metabolic engineering in Halomonas elongata

  • Halomonas elongata is a halophilic γ-proteobacterium that synthesizes and accumulates the compatible solute ectoine to cope with osmotic stress in saline environments. Ectoine possesses protecting properties and stabilizes proteins as well as whole cells against stresses like ionizing radiation and cytotoxins. These properties make ectoine a highly demanded ingredient in cosmetics and pharmaceuticals. To date H. elongata is the industrial Producer strain of ectoine, but several metabolic factors for optimum ectoine production remain to be explored. In this work, we used up to date Metabolic engineering approaches following the ‘Push, Pull, Block – strategy’ to examine targets that contribute to ectoine synthesis. Firstly, the basics of glucose catabolism were inspected to PUSH and enhance carbon flow towards ectoine synthesis. Secondly, lysine biosynthesis was targeted to BLOCK a pathway that is competing for precursors with ectoine synthesis. Thirdly, the mechanosensitive (MS)Halomonas elongata is a halophilic γ-proteobacterium that synthesizes and accumulates the compatible solute ectoine to cope with osmotic stress in saline environments. Ectoine possesses protecting properties and stabilizes proteins as well as whole cells against stresses like ionizing radiation and cytotoxins. These properties make ectoine a highly demanded ingredient in cosmetics and pharmaceuticals. To date H. elongata is the industrial Producer strain of ectoine, but several metabolic factors for optimum ectoine production remain to be explored. In this work, we used up to date Metabolic engineering approaches following the ‘Push, Pull, Block – strategy’ to examine targets that contribute to ectoine synthesis. Firstly, the basics of glucose catabolism were inspected to PUSH and enhance carbon flow towards ectoine synthesis. Secondly, lysine biosynthesis was targeted to BLOCK a pathway that is competing for precursors with ectoine synthesis. Thirdly, the mechanosensitive (MS) channels of H. elongata have been examined as possible excretion routes for ectoine. An overexpression of the ectoine excretion channels potentially could PULL out product at the end of ectoine synthesis and increase overall ectoine flux. For the interrogation of central metabolic pathways, we established the new molecular tool CRISPR-mediated interference (CRISPRi) for targeted modulation of gene expression. PUSH Glucose catabolism through the Entner-Doudoroff (ED) and Emden-Meyerhof-Parnas (EMP) pathway was targeted with CRISPRi and examined on gene expression level for ist response to changing salinity and different carbon sources. Changing salinity did not influence gene expression levels of glucose catabolism but the carbon source glucose triggered glycolysis through the (ED) pathway. When gene expression of the ED pathway was downregulated with CRISPRi, the growth rates remained constant. The observations indicate a metabolic overflow mechanism for glycolysis, in which fluxes are constantly high - even at lower salinity when no resources are demanded for ectoine synthesis. The further analysis of glucose to product conversion rates will advise optimum conditions for future industrial cultivation processes. BLOCK Lysine biosynthesis was downregulated with CRISPRi, which led to a significant increase in ectoine production. Hence, the blockage of lysine biosynthesis would be a valuable strategy for the optimization of the industrial producer strain in future studies. PULL MS channels and ectoine regulation are inevitably connected in osmoadaptation. Therefore, ectoine excretion, growth performance and gene expression levels of the MS channels were monitored in steady state conditions and in response to osmotic shock in the wildtype strain and in a MS channel deletion mutant. We observed that the MS channels were essential for the survival of osmotic shock but surprisingly their presence reduced cell growth under high salinity. The MS channels were only partially responsible for ectoine excretion. Thus, alternative ectoine excretion channels must exist and remain to be explored.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Vandrich_thesis_FINAL.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Jasmina Vandrich
Dokumenttyp:Dissertation
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:4 Material und Umwelt
4 Material und Umwelt / 4.1 Biologische Materialschädigung und Referenzorganismen
Herausgeber (Institution):Universität Potsdam
Titel verleihende Institution:Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät
Gutachter*innen:E. Dittmann, Hans-Jörg KunteORCiD, E. Galinski
Datum der Abschlussprüfung:19.09.2019
Verlagsort:Potsdam
Erste Seite:1
Letzte Seite:94
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:CRISPR dCas9; Ectoine; Halomonas elongata
Themenfelder/Aktivitätsfelder der BAM:Umwelt
Umwelt / Circular Economy
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:12.08.2020
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.