• Treffer 1 von 0
Zurück zur Trefferliste

Investigation of sorption of environmental pollutants to virgin and aged microplastics

  • Plastics are a diverse group of materials used in packaging, construction, medical applications, and many more. Due to their favourable properties their production and consequently their input into natural systems has increased drastically over the last decades. In the environment (photo-)oxidation processes and mechanical abrasion may then lead to the decomposition of the plastics. During this process microplastics (<5 mm) are formed. It has been noted that xenobiotics which are present in the same compartments can sorb to microplastics. However, knowledge on this topic is still limited. The work presented here aimed to investigate the sorption of the type 2 diabetes drug metformin and the triazole fungicide difenoconazole to virgin polyamide (PA), polypropylene (PP), and polystyrene (PS). Additionally, sorption to cryo-milled PP and acid-treated PA was studied. The latter was also characterised by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC),Plastics are a diverse group of materials used in packaging, construction, medical applications, and many more. Due to their favourable properties their production and consequently their input into natural systems has increased drastically over the last decades. In the environment (photo-)oxidation processes and mechanical abrasion may then lead to the decomposition of the plastics. During this process microplastics (<5 mm) are formed. It has been noted that xenobiotics which are present in the same compartments can sorb to microplastics. However, knowledge on this topic is still limited. The work presented here aimed to investigate the sorption of the type 2 diabetes drug metformin and the triazole fungicide difenoconazole to virgin polyamide (PA), polypropylene (PP), and polystyrene (PS). Additionally, sorption to cryo-milled PP and acid-treated PA was studied. The latter was also characterised by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and dynamic scanning calorimetry (DSC). Sorption experiments were planned on the basis of a full factorial design with agitation, salinity, and pH value as parameters. Results of the study revealed that metformin did not show any affinity towards the tested materials. Difenoconazole however, sorbed to all microplastics. Data analysis showed that agitation is the main influencing factor, whereas salinity and the pH value held little to no significance. Mechanical and chemical treatment of the polymers led to enhanced sorption of difenoconazole. Long-term sorption experiments confirmed the hypothesis that particle size strongly influences the time until sorption-desorption equilibrium is reached.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ANAKON17_170315.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Ulrike Mülow-Stollin
Koautor*innen:Caroline Goedecke, S. Hering, Janine Richter, Christian Piechotta, Andrea Paul, Ulrike Braun
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Environment; Microplastic; Pollutants
Veranstaltung:ANAKON 2017
Veranstaltungsort:Tübingen, Germany
Beginndatum der Veranstaltung:03.04.2017
Enddatum der Veranstaltung:06.04.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:16.05.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.