• Treffer 1 von 2
Zurück zur Trefferliste

Numerical simulations and field validation tests for shock waves’ propagation

  • At the BAM test range in Horstwalde a number of field trials were conducted with a HE to investigate the free field propagation of shock waves and that resulting from reflection at structure surfaces. In addition, the behavior of the structure under the effect of the dynamic pressure waves after explosion was studied. For both the tests, (a) with a 30 cm thick reinforced-concrete wall and (b) in free field, pressure was measured over the entire test duration with piezoelectric sensors at distances of 5, 10 and 15 m from the detonation center for a range of HE quantities. Apart from this, high speed footage of the tests was recorded as well. Corresponding to the field tests, numerical simulations of HE detonation were performed using APOLLO BLASTSIMULATOR, a CFD tool developed by Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute. The accuracy of the simulation results as well as the computing times depend on the spatial grid resolution. The outputs ofAt the BAM test range in Horstwalde a number of field trials were conducted with a HE to investigate the free field propagation of shock waves and that resulting from reflection at structure surfaces. In addition, the behavior of the structure under the effect of the dynamic pressure waves after explosion was studied. For both the tests, (a) with a 30 cm thick reinforced-concrete wall and (b) in free field, pressure was measured over the entire test duration with piezoelectric sensors at distances of 5, 10 and 15 m from the detonation center for a range of HE quantities. Apart from this, high speed footage of the tests was recorded as well. Corresponding to the field tests, numerical simulations of HE detonation were performed using APOLLO BLASTSIMULATOR, a CFD tool developed by Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute. The accuracy of the simulation results as well as the computing times depend on the spatial grid resolution. The outputs of grid-independence study demonstrated that the peak pressure is higher and the pressure-rise is steeper for simulation runs with a finer grid. Remarkably however, the exponential pressure decline is independent of the grid resolution. Advantage was taken of this feature to obtain improved peak pressure values from comparatively coarser grids, in that curve-fitting was performed using the Friedlander Equation, which is well documented in literature. The simulation results for pressure-time histories were compared with the field-test results at the corresponding measurement positions. The two data sets showed good correlation in case of scaled distances greater than 5 [m/kg1/3] for both peak pressure and impulse values. This conclusion could be drawn for both trial-types: free-field and with reflection wall. The near field region, on the other hand, necessitates further investigation for the validation of numerical simulation.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 0_Poster_NTREM_2018.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Amit Agasty
Koautor*innen:Moana Nolde, Holger Krebs, Olaf Mücke, Benjamin Theil, Dietmar Näther
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:2 Prozess- und Anlagensicherheit
2 Prozess- und Anlagensicherheit / 2.3 Einstufung von Gefahrstoffen und -gütern
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Field-tests; Friedlander curve; Numerical simulation; Shock waves
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Infrastruktur / Security
Veranstaltung:New Trends in Research of Energetic Materials
Veranstaltungsort:Pardubice, Czech Republic
Beginndatum der Veranstaltung:18.04.2018
Enddatum der Veranstaltung:20.04.2018
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:17.10.2018
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.