• Treffer 32 von 205
Zurück zur Trefferliste

Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces

  • Tribological screening tests (simple, reciprocating ball-on-flat tests) were performed with the objective to identify an appropriate coating for the articulating surfaces of artificial hip joints whose acetabular cups and femoral stems are made from Ti–6Al–4V alloy, which is appreciated for its light weight, good biocompatibility and elastic properties similar to those of natural bone. Standard coatings like TiN or CrN performed better than more complicated multi-layer systems, though not as good as different types of amorphous carbon coatings, generally referred to as diamond-like carbon or DLC coatings. Among the latter, hydrogenated amorphous carbon (a-C:H) displayed the best properties, especially if the hydrogen content was increased by reducing the bias voltage during PA-CVD-deposition. The optimised a-C:H coating revealed the most promising wear behaviour under the applied testing conditions, i.e. the increase of linear wear with the number of cycles was close to zero. RegardingTribological screening tests (simple, reciprocating ball-on-flat tests) were performed with the objective to identify an appropriate coating for the articulating surfaces of artificial hip joints whose acetabular cups and femoral stems are made from Ti–6Al–4V alloy, which is appreciated for its light weight, good biocompatibility and elastic properties similar to those of natural bone. Standard coatings like TiN or CrN performed better than more complicated multi-layer systems, though not as good as different types of amorphous carbon coatings, generally referred to as diamond-like carbon or DLC coatings. Among the latter, hydrogenated amorphous carbon (a-C:H) displayed the best properties, especially if the hydrogen content was increased by reducing the bias voltage during PA-CVD-deposition. The optimised a-C:H coating revealed the most promising wear behaviour under the applied testing conditions, i.e. the increase of linear wear with the number of cycles was close to zero. Regarding the materials examined in this study, correlation of wear with mechanical properties obtained by nano-indentation revealed that high hardness was not an adequate criterion for selecting appropriate coatings. A high ratio of hardness and elastic modulus (H/E) proved to be more important. Microstructural and micro-analytical investigations revealed transformation of TiN and CrN to TiO2 and Cr2O3, respectively, and amorphous carbon was, at least partly, transformed to graphite. Furthermore, incorporation of Al2O3 from the ball was observed at a very fine scale. The wear debris of favourable coatings always formed agglomerates of nano-scale particles. It was shown that commercial nano-particles of Al2O3, Cr2O3 and carbon black are comparable to particles generated by the tribological tests. However, it is uncertain whether they are comparable to those formed during simulator studies or in vivo. Furthermore, the performance of the favourable coating has to be tested in a hip joint simulator before its potential for application in prostheses can be assessed.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Werner ÖsterleORCiD, Dieter Klaffke, Michael Griepentrog, U. Gross, I. Kranz, Ch. Knabe
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Wear
Jahr der Erstveröffentlichung:2008
Verlag:Elsevier
Verlagsort:Amsterdam
Jahrgang/Band:264
Ausgabe/Heft:7-8
Erste Seite:505
Letzte Seite:517
Freie Schlagwörter:Coating; DLC; Implant; Nano-particles; Titanium alloy; Wear debris
DOI:10.1016/j.wear.2007.04.001
ISSN:0043-1648
Verfügbarkeit des Dokuments:Weder Datei noch physisches Exemplar vorhanden ("No Access")
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:06.03.2008
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.