• Treffer 2 von 15
Zurück zur Trefferliste

Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona

  • The study of protein corona formation on nanoparticles (NPs) represents an actual main issue in colloidal, biomedical and toxicological sciences. However, little is known about the influence of polymer shells on the formation and time evolution of protein corona onto functionalized NPs. Therefore, silicapoly(ethylene glycol) core–shell nanohybrids (SNPs@PEG) with different polymer molecular weights (MW) were synthesized and exhaustively characterized. Bovine serum albumin (BSA) at different concentrations (0.1–6 wt%) was used as model protein to study protein corona formation and time evolution. For pristine SNPs and SNPs@PEG (MW = 350 g/mol), zeta potential at different incubation times show a dynamical evolution of the nanoparticle–protein corona. Oppositely, for SNPs@PEG with MW ≥2000 g/mol a significant suppression of corona formation and time evolution was observed. Furthermore, AFM investigations suggest a different orientation (side-chain or perpendicular) and Penetration depthThe study of protein corona formation on nanoparticles (NPs) represents an actual main issue in colloidal, biomedical and toxicological sciences. However, little is known about the influence of polymer shells on the formation and time evolution of protein corona onto functionalized NPs. Therefore, silicapoly(ethylene glycol) core–shell nanohybrids (SNPs@PEG) with different polymer molecular weights (MW) were synthesized and exhaustively characterized. Bovine serum albumin (BSA) at different concentrations (0.1–6 wt%) was used as model protein to study protein corona formation and time evolution. For pristine SNPs and SNPs@PEG (MW = 350 g/mol), zeta potential at different incubation times show a dynamical evolution of the nanoparticle–protein corona. Oppositely, for SNPs@PEG with MW ≥2000 g/mol a significant suppression of corona formation and time evolution was observed. Furthermore, AFM investigations suggest a different orientation (side-chain or perpendicular) and Penetration depth of BSA toward PEGylated surfaces depending on the polymer length which may explain differences in protein corona evolution.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Polymer shell - protein corona.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Kishore Natte, Jörg Florian Friedrich, Sebastian Wohlrab, J. Lutzki, R. von Klitzing, Werner ÖsterleORCiD, Guillermo Orts-Gil
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Colloids and Surfaces B: Biointerfaces
Jahr der Erstveröffentlichung:2013
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe
6 Materialschutz und Oberflächentechnik
6 Materialschutz und Oberflächentechnik / 6.5 Polymere in Life Science und Nanotechnologie
Verlag:Elsevier
Jahrgang/Band:104
Erste Seite:213
Letzte Seite:220
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:BSA; Biointerface; Nanoparticles; PEGylation; Protein corona; Silica
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Analytical Sciences / Oberflächen- und Grenzflächenanalytik
DOI:https://doi.org/10.1016/j.colsurfb.2012.11.019
ISSN:0927-7765
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:02.12.2016
Referierte Publikation:Nein