• Treffer 1 von 205
Zurück zur Trefferliste

On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system

  • The need for a better understanding of nanoparticle–protein interactions and the mechanisms governing the resulting colloidal stability has been emphasised in recent years. In the present contribution, the short and long term colloidal stability of silica nanoparticles (SNPs) and silica–poly(ethylene glycol) nanohybrids (Sil–PEG) have been scrutinised in a protein model system. Well-defined silica nanoparticles are rapidly covered by bovine serum albumin (BSA) and form small clusters after 20 min while large agglomerates are detected after 10 h depending on both particle size and nanoparticle–protein ratio. Oppositely, Sil–PEG hybrids present suppressive protein adsorption and enhanced short and long term colloidal stability in protein solution. No critical agglomeration was found for either system in the absence of protein, proving that instability found for SNPs must arise as a consequence of protein adsorption and not to high ionic environment. Analysis of the small angle X-rayThe need for a better understanding of nanoparticle–protein interactions and the mechanisms governing the resulting colloidal stability has been emphasised in recent years. In the present contribution, the short and long term colloidal stability of silica nanoparticles (SNPs) and silica–poly(ethylene glycol) nanohybrids (Sil–PEG) have been scrutinised in a protein model system. Well-defined silica nanoparticles are rapidly covered by bovine serum albumin (BSA) and form small clusters after 20 min while large agglomerates are detected after 10 h depending on both particle size and nanoparticle–protein ratio. Oppositely, Sil–PEG hybrids present suppressive protein adsorption and enhanced short and long term colloidal stability in protein solution. No critical agglomeration was found for either system in the absence of protein, proving that instability found for SNPs must arise as a consequence of protein adsorption and not to high ionic environment. Analysis of the small angle X-ray scattering (SAXS) structure factor indicates a short-range attractive potential between particles in the silica-BSA system, which is in good agreement with a protein bridging agglomeration mechanism. The results presented here point out the importance of the nanoparticle surface properties on the ability to adsorb proteins and how the induced or depressed adsorption may potentially drive the resulting colloidal stability.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-S0927776513001471-main.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Guillermo Orts Gil, Kishore Natte, Raphael Thiermann, Matthias Girod, Steffi Rades, Henryk Kalbe, Andreas F. Thünemann, M. Maskos, Werner ÖsterleORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Colloids and surfaces B: Biointerfaces
Jahr der Erstveröffentlichung:2013
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe
6 Materialschutz und Oberflächentechnik
6 Materialschutz und Oberflächentechnik / 6.1 Oberflächenanalytik und Grenzflächenchemie
6 Materialschutz und Oberflächentechnik / 6.5 Polymere in Life Science und Nanotechnologie
Verlag:Elsevier B.V.
Verlagsort:Amsterdam
Jahrgang/Band:108
Erste Seite:110
Letzte Seite:119
Freie Schlagwörter:BSA; Biointerface; Colloidal stability; Nanoparticles; PEG; Protein corona
DOI:https://doi.org/10.1016/j.colsurfb.2013.02.027
ISSN:0927-7765
ISSN:1873-4367
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:03.02.2014