• Treffer 1 von 4
Zurück zur Trefferliste

Rotational Fluctuations of Water Confined to Layered Oxide Materials - Nonmonotonous Temperature Dependence of Relaxation Times

  • The rotational molecular dynamics of water confined to layered oxide materials with brucite structure was studied by dielectric spectroscopy in the frequency range from 10-2 to 107 Hz and in a broad temperature interval. The layered double hydroxide samples show one relaxation process, which was assigned to fluctuations of water molecules forming a layer, strongly adsorbed to the oxide surface. The temperature dependence of the relaxation rates has an unusual saddlelike shape characterized by a maximum. The model of Ryabov et al. (J. Phys. Chem. B 2001, 105, 1845) recently applied to describe the dynamics of water molecules in porous glasses is employed also for the layered materials. This model assumes two competing effects: rotational fluctuations of water molecules that take place simultaneously with defect formation, allowing the creation of free volume necessary for reorientation. The activation energy of rotational fluctuations, the energy of defect formation, a pre-exponentialThe rotational molecular dynamics of water confined to layered oxide materials with brucite structure was studied by dielectric spectroscopy in the frequency range from 10-2 to 107 Hz and in a broad temperature interval. The layered double hydroxide samples show one relaxation process, which was assigned to fluctuations of water molecules forming a layer, strongly adsorbed to the oxide surface. The temperature dependence of the relaxation rates has an unusual saddlelike shape characterized by a maximum. The model of Ryabov et al. (J. Phys. Chem. B 2001, 105, 1845) recently applied to describe the dynamics of water molecules in porous glasses is employed also for the layered materials. This model assumes two competing effects: rotational fluctuations of water molecules that take place simultaneously with defect formation, allowing the creation of free volume necessary for reorientation. The activation energy of rotational fluctuations, the energy of defect formation, a pre-exponential factor, and the defect concentration are obtained as main parameters from a fit of this model to the data. The values of these parameters were compared with those found for water confined to nanoporous molecular sieves, porous glasses, or bulk ice. Several correlations were discussed in detail, such as the lower the value of the energy of defect formation, the higher the number of defects. The pre-exponential factor increases with increasing activation energy, as an expression of the compensation law, and indicates the cooperative nature of the motional process. The involvement of the surface OH groups and of the oxygen atoms of the interlayer anions in the formation of hydrogen bonds was further discussed. For the birnessite sample, the relaxation processes are probably overlaid by a dominating conductivity contribution, which is analyzed in its frequency and temperature dependence. It is found that the conductivity of birnessite obeys the characteristics of semiconducting disordered materials. Especially the Barton/Nakajima/Namikawa relationship is fulfilled. Analyzing the temperature dependence of the direct current (dc) conductivity σ0 in detail gives some hint that σ0(T) has also an unusual saddlelike form.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:L. Frunza, Andreas SchönhalsORCiD, S. Frunza, V.I. Parvulescu, B. Cojocaru, D. Carriazo, C. Martín, V. Rives
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):The journal of physical chemistry / A
Jahr der Erstveröffentlichung:2007
Herausgeber (Institution):American Chemical Society
Verlag:Soc.
Verlagsort:Washington, DC
Jahrgang/Band:111
Ausgabe/Heft:24
Erste Seite:5166
Letzte Seite:5175
DOI:10.1021/jp0717140
ISSN:1089-5639
ISSN:1520-5215
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:30.08.2007
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.