• Treffer 2 von 15
Zurück zur Trefferliste

SAXS in Analysis of Ultra-small Size-adjustable Zinc Oxide Nanoparticles for Controlled Band Gap Engineering

  • Zinc oxide (ZnO) as a wide-bandgap II-VI semiconductor finds application in areas like optoelectronics, photocatalysis as well as in detection systems. While band-gap engineering in macroscopic ZnO can be performed by alloying, the band-gap of ZnO nanoparticles is also dependent on their size. Since small-angle X-ray scattering (SAXS) provides a much higher resolution in terms of ultra-small nanoparticle size analysis compared to other techniques, it allows for a careful examination of the correlation between particle size and band-gap. We report on the microwave-assisted synthesis of oleate-capped, photoluminescent zinc oxide nanoparticles with adjustable size as dispersions in organic solvents. The spherical particles were obtained by hydrolysis of the metal precursor in presence of a strong base at temperatures above the solvent’s boiling point. Hence, the reaction is dramatically accelerated and within seconds – instead of hours at lower temperatures –, narrowly dispersed particleZinc oxide (ZnO) as a wide-bandgap II-VI semiconductor finds application in areas like optoelectronics, photocatalysis as well as in detection systems. While band-gap engineering in macroscopic ZnO can be performed by alloying, the band-gap of ZnO nanoparticles is also dependent on their size. Since small-angle X-ray scattering (SAXS) provides a much higher resolution in terms of ultra-small nanoparticle size analysis compared to other techniques, it allows for a careful examination of the correlation between particle size and band-gap. We report on the microwave-assisted synthesis of oleate-capped, photoluminescent zinc oxide nanoparticles with adjustable size as dispersions in organic solvents. The spherical particles were obtained by hydrolysis of the metal precursor in presence of a strong base at temperatures above the solvent’s boiling point. Hence, the reaction is dramatically accelerated and within seconds – instead of hours at lower temperatures –, narrowly dispersed particle systems are yielded. The particles’ sizes as derived from SAXS strongly depend on the reaction temperature and time. Choosing the right reaction conditions, the particle size and thus their band gap can be finely tuned. A size increase can be achieved both by increasing the reaction temperature and the reaction time. See Figure 1 for an exemplary comparison of five-minute syntheses at different temperatures. Here, the yielded particles display diameters between 5.0 and 7.6 nm and corresponding band-gaps of 3.32 up to 3.41 eV. The size increase is accompanied by a red-shift of the UV/Vis absorption edges and fluorescence emission. Furthermore, these particles can be transferred into water by coating with polysorbates.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 201810_SAS2018_Saloga.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Patrick E. J. Saloga
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.5 Synthese und Streuverfahren nanostrukturierter Materialien
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Microwave synthesis; SAXS; Zinc oxide nanoparticles
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Material
Veranstaltung:SAS2018 XVII International Small Angle Scattering Conference
Veranstaltungsort:Traverse City, Michigan, USA
Beginndatum der Veranstaltung:07.10.2018
Enddatum der Veranstaltung:12.10.2018
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:24.10.2018
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.