Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 9 von 26
Zurück zur Trefferliste

Three-dimensional finite element analysis of the stress-induced geometry effect on self-magnetic leakage fields during tensile deformation

  • The metal magnetic memory (MMM) technique relies on the measurement of stress-induced self-magnetic leakage fields (SMLFs) at the stress concentration zones (SCZs) of ferromagnetic materials during mechanical loading. However, there is an associated change in geometry of the specimen along with the stress due to plastic deformation. This paper presents a three-dimensional finite element (3D-FE) analysis of the stress-induced geometry effect on SMLFs in notched specimens during tensile deformation. The tangential (Hx) and normal (Hy) components of the SMLF signals have been predicted from the deformed specimens caused by different levels of tensile stress. Key parameters from the SMLF signals are determined for the possible estimation of damage in the specimen under tension. Studies reveal that the stress-induced geometry effect has a great influence (about 20%) on the SMLF signals, especially in the plastic deformation stage. The results show that the peak amplitude could be used forThe metal magnetic memory (MMM) technique relies on the measurement of stress-induced self-magnetic leakage fields (SMLFs) at the stress concentration zones (SCZs) of ferromagnetic materials during mechanical loading. However, there is an associated change in geometry of the specimen along with the stress due to plastic deformation. This paper presents a three-dimensional finite element (3D-FE) analysis of the stress-induced geometry effect on SMLFs in notched specimens during tensile deformation. The tangential (Hx) and normal (Hy) components of the SMLF signals have been predicted from the deformed specimens caused by different levels of tensile stress. Key parameters from the SMLF signals are determined for the possible estimation of damage in the specimen under tension. Studies reveal that the stress-induced geometry effect has a great influence (about 20%) on the SMLF signals, especially in the plastic deformation stage. The results show that the peak amplitude could be used for the estimation of different deformation stages under tension. The study also reveals that the SMLF signal is influenced by the thickness of the tensile specimen. The model-predicted thickness profile has also been experimentally validated.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Sharatchandra-Insight-2016.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:S. Waikom Singh, Robert Stegemann, Marc Kreutzbruck
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Insight - Non-Destructive Testing and Condition Monitoring
Jahr der Erstveröffentlichung:2016
Herausgeber (Institution):The British Institute of Non-Destructive Testing
Jahrgang/Band:58
Ausgabe/Heft:10
Erste Seite:544
Letzte Seite:550
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Finite element modelling; Metal magnetic memory; Steel; Tensile deformation
DOI:10.1784/insi.2016.58.10.544
ISSN:1354-2575
ISSN:0007-1137
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:07.11.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:24.11.2016
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.