• Treffer 5 von 15
Zurück zur Trefferliste

Optical Methods for the Quantification of Functional Groups on Particle Surfaces

  • Polymer nanoparticles are of increasing importance for a wide range of applications in the material and life sciences. This includes their application as carriers for e.g., analyte-responsive ligands for DNA sequencing platforms, drugs as well as dye molecules for use as multichromophoric reporters for signal enhancement in optical assays or the fabrication of nanosensors and targeted probes in bioimaging studies. Application-relevant properties of nanometer- and micrometer-sized particles (NP) include their size (and size distribution), colloidal stability, biocompatibility, and ease of subsequent functionalization, e.g., with linkers, sensor molecules, and targeting ligands. In this respect, the knowledge of the chemical nature, the total number of surface groups and the number of groups accessible for subsequent coupling reactions with differently sized optical labels or biomolecules is mandatory. This requires robust, reliable and validated methods, which can be employed for thePolymer nanoparticles are of increasing importance for a wide range of applications in the material and life sciences. This includes their application as carriers for e.g., analyte-responsive ligands for DNA sequencing platforms, drugs as well as dye molecules for use as multichromophoric reporters for signal enhancement in optical assays or the fabrication of nanosensors and targeted probes in bioimaging studies. Application-relevant properties of nanometer- and micrometer-sized particles (NP) include their size (and size distribution), colloidal stability, biocompatibility, and ease of subsequent functionalization, e.g., with linkers, sensor molecules, and targeting ligands. In this respect, the knowledge of the chemical nature, the total number of surface groups and the number of groups accessible for subsequent coupling reactions with differently sized optical labels or biomolecules is mandatory. This requires robust, reliable and validated methods, which can be employed for the characterization of a broad variety of particle systems independent of their optical properties, i.e., scattering or the presence of encoding dyes, and can be preferably performed specifically, sensitively, and fast with inexpensive equipment. Particularly attractive methods are here straightforward colorimetric, and fluorometric assays. In this respect, we studied a variety of conventional labels for optical readout, utilizing e.g., a change in intensity and/or color of absorption and/or emission. While in common assays, most reporters are measured directly at the particle surface, which can easily lead to signal distortions by scattering and encoding dyes, we focus on the development of cleavable and multimodal labels. These labels are detectable both bound at the particle surface and after cleavage of a linker unit in the supernatant with different analytical methods like fluorometry together with elemental analysis, ICP-OES or ICP-MS for straightforward method validation by method comparison. Here, we present our newly-synthesized cleavable labels and their application for photometric quantification of amino, thiol and carboxy surface groups on different types of nanomaterials and compare the results obtained from surface group analysis relying on conventional labels.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • NN_EBS2017.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Nithiya Nirmalananthan-Budau
Koautor*innen:Marko Moser, Thomas Behnke, Ute Resch-Genger
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Nanoparticle; Optical quantification; Surface functional groups
Veranstaltung:First European / 10th German BioSensor Symposium
Veranstaltungsort:Potsdam, Germany
Beginndatum der Veranstaltung:20.03.2017
Enddatum der Veranstaltung:23.03.2017
Bemerkung:
Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. -  Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N.
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:12.04.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.